Impacts of Mesoscale Currents on the Diurnal Critical Latitude Dependence of Internal Tides: A Numerical Experiment Based on Barcoo Seamount (original) (raw)

Diurnal Critical Latitude and the Latitude Dependence of Internal Tides, Internal Waves, and Mixing Based on Barcoo Seamount

Journal of Geophysical Research: Oceans, 2017

Vertical mixing is a key issue in ocean circulation modeling today. Mixing, particularly tidal mixing, is poorly represented in ocean and climate models, which generally ignore critical latitude effects. Critical latitude is the latitude where the inertial frequency equals the tidal frequency and differs for each tidal constituent. Critical latitudes strongly influence generation and propagation of internal tides. Using a model, latitude effects on tidal interactions with a seamount were examined by varying the latitude from 20° to 38°, through the range of the diurnal critical latitudes. The diurnal critical latitudes were found to strongly influence propagation of the diurnal internal tides, the magnitude of the semidiurnal tides, the energy in the harmonic and higher frequencies, the barotropic mean flow, and the diffusivities. The strongest effects occurred between the K1 and O1 critical latitudes. Here the semidiurnal tides, harmonics, and high frequencies were enhanced, barotr...

Impact of a Mean Current on the Internal Tide Energy Dissipation at the Critical Latitude

Journal of Physical Oceanography, 2017

Previous numerical studies of the dissipation of internal tides in idealized settings suggest the existence of a critical latitude (~29°) where dissipation is enhanced. But observations only indicate a modest enhancement at this latitude. To resolve this difference between observational and numerical results, the authors study the latitudinal dependence of internal tides’ dissipation in more realistic conditions. In particular, the ocean is not a quiescent medium; the presence of large-scale currents or mesoscale eddies can impact the propagation and dissipation of internal tides. This paper investigates the impact of a weak background mean current in numerical simulations. The authors focus on the local dissipation of high spatial mode internal waves near their generation site. The vertical profile of dissipation and its variation with latitude without the mean current are consistent with earlier studies. But adding a weak mean current has a major impact on the latitudinal distribu...

The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part II: Interactions with Mesoscale Currents*

Journal of Physical Oceanography, 2010

Observations of semidiurnal surface currents in the Kauai Channel, Hawaii, are interpreted in the light of the interaction of internal tides with energetic surface-intensified mesoscale currents. The impacts on internal tide propagation of a cyclone of 55-km diameter and ;100-m vertical decay scale, as well as of vorticity waves of ;100-km wavelength and 100-200-m vertical decay scales, are investigated using 3D ray tracing. The Doppler-shifted intrinsic frequency is assumed to satisfy the classic hydrostatic internal wave dispersion relation, using the local buoyancy frequency associated with the background currents through thermal-wind or gradient-wind balance. The M 2 internal tide rays with initial horizontal wavelength of 50 km and vertical wavelength of O(1000 m) are propagated from possible generation locations at critical topographic slopes through idealized mesoscale currents approximating the observed currents. Despite the lack of scale separation between the internal waves and background state, which is required by the ray-tracing approximation, the results are qualitatively consistent with observations: the cyclone causes the energy of internal tide rays propagating through its core to increase near the surface (up to a factor of 15), with surfacing time delayed by up to 5 h (;1508 phase lag), and the vorticity waves enhance or reduce the energy near the surface, depending on their phase. These examples illustrate the fact that, even close to their generation location, semidiurnal internal tides can become incoherent with astronomical forcing because of the presence of mesoscale variability. Internal tide energy is mainly affected by refraction through the inhomogeneous buoyancy frequency field, with Doppler shifting playing a secondary but not negligible role, inducing energy transfers between the internal tides and background currents. Furthermore, the vertical wavelength can be reduced by a factor of 6 near the surface in the presence of the cyclone, which, combined with the energy amplification, leads to increased vertical shear within the internal tide rays, with implications for internal wave-induced mixing in the ocean.

Interactions between barotropic tides and mesoscale processes in deep ocean and shelf regions

Ocean Dynamics

The interactions between barotropic tides and mesoscale processes were studied using the results of a numerical model in which tidal forcing was turned on and off. The research area covered part of the East Atlantic Ocean, a steep continental slope, and the European Northwest Shelf. Tides affected the baroclinic fields at much smaller spatial scales than the barotropic tidal scales. Changes in the horizontal patterns of the M2 and M4 tidal constituents provided information about the two-way interactions between barotropic tides and mesoscale processes. The interaction between the atmosphere and ocean measured by the work done by wind was also affected by the barotropic tidal forcing. Tidal forcing intensified the transient processes and resulted in a substantial transformation of the wave number spectra in the transition areas from the deep ocean to the shelf. Tides flattened the sea-surface height spectra down to ~ k−2.5 power law, thus reflecting the large contribution of the proc...

Observations of semidiurnal internal tidal currents off central Chile (36.6°S

Continental Shelf Research, 2010

Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring-neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring-neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.