Manifestation of Quantum Chaos in Scattering Techniques: Application to Low-Energy and Photoelectron Diffraction Intensities (original) (raw)

Abstract

Intensities of LEED and PED are analyzed from a statistical point of view. The probability distribution is compared with a Porter-Thomas law, characteristic of a chaotic quantum system. The agreement obtained is understood in terms of analogies between simple models and Berry's conjecture for a typical wavefunction of a chaotic system. The consequences of this behaviour on surface structural analysis are qualitatively discussed by looking at the behaviour of standard correlation factors.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. E.P. Wigner, e.g. see Statistical Theories of Spectra: Fluc- tuations, Ed. by C.E. Porter, Academic Press (New York, 1965).
  2. H. Alt, H.-D. Gräf, H.L. Harney, R. Hofferbert, H. Lengeler, A. Ritchter, P. Schardt, V.A. Weidenmüller, Phys. Rev. Lett. 74, 62 (1995).
  3. P.B. Wilkinson et al., Nature 380, 608 (1996).
  4. M.C. Gutzwiller, Chaos in Classical and Quantum Mechan- ics, Springer Verlag (New York, 1990).
  5. E.R. Mucciolo, R.B. Capaz, B.L. Altshuler, J.D. Joannopoulos, Phys. Rev. B. 50, 8245 (1994).
  6. M.L. Mehta, Random Matrices, 2nd ed. (Academic Press, San Diego, CA, 1991).
  7. C.E. Porter, R.G. Thomas, Phys. Rev. 104, 483 (1956).
  8. K.B. Efetov, V.N. Prigodin, Phys. Rev. Lett. 70, 1315 (1993).
  9. F.J. Dyson, J. Math. Phys. 3, 140 (1962).
  10. M.V. Berry, in Chaotic Behaviour of Deterministic Sys- tems, Ed. by G. Looss, R. Helleman and R. Stora (North Holland, NY 1983), p. 171; P.O'Connor, J. Gehlen, E.J. Heller, Phys. Rev. Lett. 58, 1296 (1987).
  11. P.A. Lee and J.B. Pendry, Phys. Rev. B 11, 2795 (1975);
  12. J.J. Barton and D.A. Shirley, Phys. Rev. B 32, 1906 (1985)
  13. D.K. Saldin and P.L. de Andres, Phys. Rev. Lett. 64, 1270 (1990).
  14. J.B. Pendry and D.K. Saldin, Surf. Sci. 145, 33 (1984);
  15. D.K. Saldin and J.B. Pendry, Comput. Phys. Commun. 42, 399 (1986).
  16. U. Starke, P.L. de Andres, D.K. Saldin, K. Heinz and J.B. Pendry, Phys. Rev. B, 38, 12277 (1988).
  17. K. Heinz, private communication.
  18. F.J. Palomares, Ph.D. thesis, Chap. 3 (pg. 66), Universidad Autonoma de Madrid, Madrid (1993).
  19. P.J. Rous, J.B. Pendry, D.K. Saldin, K. Heinz, K. Müller, N. Bickel, Phys. Rev. Lett. 57 2951 (1986);
  20. P.J. Rous, Ph.D. thesis, Chap. 6 (pg. 167), Imperial College of Sci- ence, Technology and Medicine, London (1986).
  21. M.A. Van Hove and S.Y. Tong, Surface Crystallography by LEED, (Springer-Verlag, Berlin, 1979);
  22. M.A. Van Hove, W.H. Weinberg and C.M. Chan, Low-Energy Electron Diffraction, (Springer-Verlag, Berlin, 1986).
  23. J.B. Pendry, J. Phys. C: Solid State Phys. 13 (1980) 937.
  24. C. Polop, et al., unpublished. FIG. 4. Probability distribution for MS intensities in a LEED model. Different materials are shown. (a) Thick solid line: Porter-Thomas law; (b) dotted: Cu(100); (c) dashed: W(100); (d) dashed dotted: Si(111); (e) dashed two-dotted: c(8 × 2)GaAs(100) (experimental).