Crystal structure of the surface oxide layer on titanium and its changes arising from immersion (original) (raw)
Journal of Biomedical Materials Research, 1995
Abstract
The passivating surface oxide on titanium is one of the elements considered in the explanation of the favorable biologic response of this metal in implant applications. In the present study, transmission electron microscopy was used to identify the crystal structure and morphology of the oxide film on commercially pure titanium specimens before and after immersion in simulated physiologic fluids. The results show that the oxide layer is composed mainly of anatase and rutile, both of which are tetragonal in structure. Although the simulated physiologic fluids did not induce an observable change in the crystal structure for the immersion times investigated, the results indicate an immersion-induced change in microstructure from a fine-grained to a coarser-grained structure. The grain growth observed could be attributed to the growth of the native oxide crystals; however, it most likely results from the formation of a new oxide layer. The results also support oxide thickening as one of the processes associated with passive dissolution of titanium.
Elsie Effah Kaufmann hasn't uploaded this paper.
Let Elsie know you want this paper to be uploaded.
Ask for this paper to be uploaded.