How Much Do Negative Probabilities Matter in Option Pricing?: A Case of a Lattice-Based Approach for Stochastic Volatility Models (original) (raw)
2021, Journal of Risk and Financial Management
In this paper, we focus on two-factor lattices for general diffusion processes with state-dependent volatilities. Although it is common knowledge that branching probabilities must be between zero and one in a lattice, few methods can guarantee lattice feasibility, referring to the property that all branching probabilities at all nodes in all stages of a lattice are legitimate. Some practitioners have argued that negative probabilities are not necessarily ‘bad’ and may be further exploited. A theoretical framework of lattice feasibility is developed in this paper, which is used to investigate how negative probabilities may impact option pricing in a lattice approach. It is shown in this paper that lattice feasibility can be achieved by adjusting a lattice’s configuration (e.g., grid sizes and jump patterns). Using this framework as a benchmark, we find that the values of out-of-the-money options are most affected by negative probabilities, followed by in-the-money options and at-the-...
Related papers
Pricing Options under Generalized GARCH and Stochastic Volatility Processes
The Journal of Finance, 1999
In this paper, we develop an efficient lattice algorithm to price European and American options under discrete time GARCH processes. We show that this algorithm is easily extended to price options under generalized GARCH processes, with many of the existing stochastic volatility bivariate diffusion models appearing as limiting cases. We establish one unifying algorithm that can price options under almost all existing GARCH specifications as well as under a large family of bivariate diffusions in which volatility follows its own, perhaps correlated, process.
Pricing Exotic Options Using Some Lattice Procedures
GANIT: Journal of Bangladesh Mathematical Society
In this work, we discuss some very simple and extremely efficient lattice models, namely, Binomial tree model (BTM) and Trinomial tree model (TTM) for valuing some types of exotic barrier options in details. For both these models, we consider the concept of random walks in the simulation of the path which is followed by the underlying stock price. Our main objective is to estimate the value of barrier options by using BTM and TTM for different time steps and compare these with the exact values obtained by the benchmark Black-Scholes model (BSM). Moreover, we analyze the convergence of these lattice models for these exotic options. All the results have been shown numerically as well as graphically. GANITJ. Bangladesh Math. Soc.41.1 (2021) 26-40
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.