Global estimates for kernels of Neumann series and Green's functions (original) (raw)
Abstract
We obtain global pointwise estimates for kernels of the resolvents (I-T)^-1 of integral operators Tf(x) = ∫_Ω K(x, y) f(y) d ω(y) on L^2(Ω, ω) under the assumptions that ||T||_L^2(ω) → L^2 (ω) <1 and d(x,y)=1/K(x,y) is a quasi-metric. Let K_1=K and K_j(x,y) = ∫_Ω K_j-1 (x,z) K(z,y) d ω (z) for j ≥ 1. Then K(x,y) e^c K_2 (x,y)/K(x,y)≤∑_j=1^∞ K_j(x,y) ≤ K(x,y) e^C K_2 (x,y)/K(x,y), for some constants c,C>0. Our estimates yield matching bilateral bounds for Green's functions of the fractional Schrödinger operators (-)^α/2-q with arbitrary nonnegative potentials q on R^n for 0<α<n, or on a bounded non-tangentially accessible domain Ω for 0<α< 2. In probabilistic language, these results can be reformulated as explicit bilateral bounds for the conditional gauge associated with Brownian motion or α-stable Lévy processes.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (16)
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273.
- A. Ancona, Some results and examples about the behaviour of harmonic functions and Green's functions with respect to second order elliptic oper- ators, Nagoya Math. J. 165 (2002), 123-158.
- K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek, Potential Analysis of Stable Processes and its Ex- tensions, Lecture Notes Math. 1980, Springer-Verlag, Berlin, 2009.
- K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der math. Wissenschaften 312, Springer, Berin- Heidelberg, 1995.
- M. Frazier and I. E. Verbitsky, Solvability conditions for a discrete model of Schrödinger's equation, Analysis, Partial Differential Equations and Applications, Operator Theory: Adv. Appl. 193 (2009) Birkhäuser, Basel, 65-80.
- M. Frazier and I. E. Verbitsky, Global Green's function estimates, Around the Research of Vladimir Maz'ya III, Analysis and Applications, Ari Laptev, ed., International Mathematics Series 13 (2010), 105-152.
- A. Grigor'yan and W. Hansen, Lower estimates for a perturbed Green function, J. d'Anal. Math. 104 (2008), 25-58.
- W. Hansen, Uniform boundary Harnack principle and generalized trian- gle property, J. Funct. Anal. 226 (2005), 452-484.
- W. Hansen and I. Netuka, On the Picard principle for ∆ + µ, Math. Z. 270 (2012), 783-807.
- J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001.
- B. J. Jaye and I. E. Verbitsky, The fundamental solution of nonlinear operators with natural growth terms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 93-139.
- B. J. Jaye and I. E. Verbitsky, Local and global behaviour of solutions to nonlinear equations with natural growth terms, Arch. Rational Mech. Anal. 204 (2012), 627-681.
- N. J. Kalton and I. E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (1999), 3441-3497.
- C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conf. Series in Math. 83, Amer. Math. Soc., 1994.
- N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren der math. Wissenschaften, 180, Springer-Verlag, New York-Heidelberg, 1972.
- F. Nazarov, S. Treil, and A. Volberg, Bellman function in stochas- tic control and harmonic analysis, Systems, approximation, singular inte- gral operators, and related topics, Oper. Theory Adv. Appl. 129 (2001) Birkhäuser, Basel, 393-423.