Quantum Theory of Noncommutative Fields (original) (raw)

Abstract

Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of "noncommutative fields". Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. J.M. Carmona and J.L. Cortés, Infrared and ultraviolet cutoffs of quantum field theory, Phys. Rev. D 65 (2002) 025006 [hep-th/0012028].
  2. S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge 1995.
  3. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393 (1998) 763.
  4. G. Amelino-Camelia and T. Piran, Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV-γ paradoxes, Phys. Rev. D 64 (2001) 036005 [astro-ph/0008107];
  5. J. Alfaro, H.A. Morales-Técotl and L.F. Urrutia, Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000) 2318 [gr-qc/9909079]; Loop quantum gravity and light propagation, Phys. Rev. D 65 (2002) 103509 [hep-th/0108061];
  6. J. Alfaro and G. Palma, Loop quantum gravity corrections and cosmic rays decays, Phys. Rev. D 65 (2002) 103516 [hep-th/0111176];
  7. T. Jacobson, S. Liberati and D. Mattingly, TeV astrophysics constraints on Planck scale Lorentz violation, Phys. Rev. D 66 (2002) 081302 [hep-ph/0112207].
  8. For a review see e.g., W. Taylor, The M(atrix) model of M-theory, Lectures for NATO School Quantum geometry, Iceland 1999 [hep-th/0002016].
  9. H. Falomir, J. Gamboa, M. Loewe, F. Méndez and J.C. Rojas, Testing spatial noncommutativity via the Aharonov-Bohm effect, Phys. Rev. D 66 (2002) 045018 [hep-th/0203260];
  10. S. Bellucci, A. Nersessian and C. Sochichiu, Two phases of the non-commutative quantum mechanics, Phys. Lett. B 522 (2001) 345 [hep-th/0106138];
  11. C. Duval and P.A. Horváthy, The 'Peierls substitution' and the exotic Galilei group, Phys. Lett. B 479 (2000) 284; Exotic galilean symmetry in the noncommutative plane, and the Hall effect, J. Phys. A 34 (2001) 10097;
  12. P.A. Horváthy, The noncommutative Landau problem and the Peierls substitution, Ann. Phys. (NY) 299 (2002) 128;
  13. C. Acatrinei, Path integral formulation of noncommutative quantum mechanics, J. High Energy Phys. 09 (2001) 007 [hep-th/0107078];
  14. A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167].
  15. V.P. Nair and A.P. Polychronakos, Quantum mechanics on the noncommutative plane and sphere, Phys. Lett. B 505 (2001) 267 [hep-th/0011172].
  16. R.J. Szabo, Quantum field theory on noncommutative spaces, hep-th/0109162.
  17. S.M. Carroll, J.A. Harvey, V.A. Kostelecký, C.D. Lane and T. Okamoto, Noncommutative field theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601.
  18. D. Colladay and V.A. Kostelecký, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464];
  19. Lorentz-violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521];
  20. R. Jackiw and V.A. Kostelecký, Radiatively induced Lorentz and CPT violation in electrodynamics, Phys. Rev. Lett. 82 (1999) 3572 [hep-ph/9901358];
  21. V.A. Kostelecký and C.D. Lane, Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D 60 (1999) 116010 [hep-ph/9908504];
  22. R. Bluhm and V.A. Kostelecký, Lorentz and CPT tests with spin-polarized solids, Phys. Rev. Lett. 84 (2000) 1381 [hep-ph/9912542];
  23. V.A. Kostelecký and R. Lehnert, Stability, causality, and Lorentz and CPT violation, Phys. Rev. D 63 (2001) 065008 [hep-th/0012060];
  24. D. Colladay and V.A. Kostelecký, Cross sections and Lorentz violation, Phys. Lett. B 511 (2001) 209 [hep-ph/0104300].
  25. S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418];
  26. F.W. Stecker and S.L. Glashow, New tests of Lorentz invariance following from observations of the highest energy cosmic gamma rays, Astropart. Phys. 16 (2001) 97 [astro-ph/0102226].
  27. J.M. Carmona, J.L. Cortés, J. Gamboa and F. Méndez, Noncommutativity in field space and Lorentz invariance violation, hep-th/0207158.
  28. K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748;
  29. G.T. Zatsepin and V.A. Kuzmin, Upper limit of the spectrum of cosmic rays, Sov. Phys. JETP Lett. 4 (1966) 78, [Zh. Eksp. Teor. Fiz. 4 (1966) 414].
  30. See e.g., D.J. Bird et al., Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to comic microwve radiation, Astrophys. J. 24 (1994) 491, erratum ibid. 441 (1995) 144;
  31. M. Takeda et al., Extension of the cosmic-ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuzmin cutoff, Phys. Rev. Lett. 81 (1998) 1163 [astro-ph/9807193];
  32. Updated AGASA event list above 4 × 10 19 eV, Astrophys. J. 522 (1999) 225.
  33. J.N. Bahcall and E. Waxman, Has the GZK cutoff been discovered?, Phys. Lett. B 556 (2003) 1 [hep-ph/0206217].
  34. R. Aloisio, P. Blasi, P. Ghia and A. Grillo, Probing the structure of space-time with cosmic rays, Phys. Rev. D D62 (2000) 053010; Detectability of space-time fluctuations in ultra high energy cosmic ray experiments, astro-ph/0210402;
  35. O. Bertolami and C.S. Carvalho, Proposed astrophysical test of Lorentz invariance, Phys. Rev. D 61 (2000) 103002 [gr-qc/9912117];
  36. O. Bertolami, Ultrahigh-energy cosmic rays and symmetries of space-time, Gen. Rel. Grav. 34 (2002) 707.
  37. For references see e.g., R.E. Streitmatter, proceedings Workshop on observing giant cosmic ray air showers from > 10 20 eV particles from space, J.F. Krizmanic et al. eds., A.I.P. Congress Proc. 433, 1997.
  38. KATRIN collaboration, A. Osipowicz et al., Katrin: a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, hep-ex/0109033.