Higher-order statistics based blind estimation of non-Gaussian bidimensional moving average models (original) (raw)

A New Algorithm for Blind Identification of MA Models Using Cumulants

Mohamed BOULOUIRD, Moha Hassani

View PDFchevron_right

Parameter Estimation of Moving Average Processes Using Cumulants and Nonlinear Optimization Algorithms

Moha Hassani

Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics, 2005

View PDFchevron_right

Identification of non-skewed MA processes using a fourth-order cumulant-based approach

David Blanco

Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99, 1999

View PDFchevron_right

Estimating autoregressive moving average model orders of non-Gaussian processes

Adnan Smadi

Electrical and Electronics Engineering, 2009

View PDFchevron_right

Cumulant-based order selection of non-Gaussian autoregressive moving average models: the corner method

Adnan Al-Smadi

Signal processing, 2005

View PDFchevron_right

Robust and accurate ARX and ARMA model order estimation of non-Gaussian processes

Adnan Elegant

IEEE Transactions on Signal Processing, 2002

View PDFchevron_right

Simple and Efficient Estimation of Parameters of Non-Gaussian Autoregressive Processes

Debasis Sengupta

1986

View PDFchevron_right

Cumulant-based order determination of non-Gaussian ARMA models

Jerry Mendel

1990

View PDFchevron_right

Exact Maximum Likelihood Estimation for Non-Gaussian Moving Averages

Jay Breidt

2009

View PDFchevron_right

Identification of autoregressive moving-average parameters of time series

Daniel Graupe

IEEE Transactions on Automatic Control, 1975

View PDFchevron_right

An efficient approach for computing non‐Gaussian ARMA model coefficients using Pisarenko's method

Adnan Smadi

International journal of circuit theory and …, 2005

View PDFchevron_right

Identification of Coefficients in a Quadratic Moving Average Process Using the Generalized Method of Moments

Richard Ashley

View PDFchevron_right

Linear modeling of multidimensional non-gaussian processes using cumulants

Jerry Mendel

Multidimensional Systems and Signal Processing, 1990

View PDFchevron_right

A New Technique for ARMA-System Identification Based on QR-Decomposition of Third Order Cumulants Matrix

Adnan Al-Smadi

International Journal of Circuits, Systems and Signal Processing, 2021

View PDFchevron_right

Closed-form results for vector moving average models with a univariate estimation approach

Giacomo Sbrana

Econometrics and Statistics, 2019

View PDFchevron_right

Efficient estimation of parameters for non-Gaussian autoregressive processes

Debasis Sengupta

Acoustics, Speech and Signal …, 1989

View PDFchevron_right

A comparative study for estimating the parameters of the second order moving average process

Mohammad Al-rawwash, Prof.Amjad Al-Nasser

MTISD 2008. Methods, …, 2008

View PDFchevron_right

Singular Value Decomposition-Based ARMA Model Parameter Estimation of Non-Gaussian Processes

Adnan Al-Smadi

Journal of Engineering Research and Technology, 2016

View PDFchevron_right

A generalized least squares estimation method for invertible vector moving average models

Rafael Flores de Frutos

Economics Letters, 1997

View PDFchevron_right

ARMA parameter estimation using only output cumulants

Jerry Mendel

1990

View PDFchevron_right

New estimation methods for autoregressive process in the presence of white observation noise

Sergiy A . Vorobyov

Signal Processing, 2020

View PDFchevron_right

Parameters estimation of correlated non‐Gaussian processes by the method of polynomial maximisation

Володимир Палагін

IET Signal Processing, 2017

View PDFchevron_right

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

maryam kasraie

2020

View PDFchevron_right

Continuous-time model identification from noisy input/output measurements using fourth-order cumulants

Hugues Garnier

Conference on Decision and Control, 2007

View PDFchevron_right

Modeling of Autocorrelation Functions Using Weighted Non-linear least Squares

Sami Sharif

2006

View PDFchevron_right

On least-squares estimation of the residual variance in the first-order moving average model

Pedro Morettin

Computational Statistics & Data Analysis, 1999

View PDFchevron_right