Microarchitecture and function of the lophophore in the bryozoan Cryptosula pallasiana (original) (raw)

Comparative morphology of the nervous system in three phylactolaemate bryozoans

2016

Background Though some elements of the bryozoan nervous system were discovered 180Â years ago, few studies of their neuromorphology have been undertaken since that time. As a result the general picture of the bryozoan nervous system structure is incomplete in respect of details and fragmentary in respect of taxonomic coverage. Results The nervous system of three common European freshwater bryozoans â Cristatella mucedo, Plumatella repens (both with a horseshoe-shaped lophophore) and Fredericella sultana (with a circular lophophore) had numerous differences in the details of the structure but the general neuroarchitecture is similar. The nervous system of the zooid consists of the cerebral ganglion, a circumpharyngeal ring and lophophoral nerve tracts (horns), both sending numerous nerves to the tentacles, and the nerve plexuses of the body wall and of the gut. A number of the important details (distal branching of the additional radial nerve, pattern of distribution of nerve cells a...

Ultrastructure of the body cavities in Phylactolaemata (Bryozoa)

Journal of Morphology, 2009

Only species belonging to the bryozoan subtaxon Phylactolaemata possess an epistome. To test whether there is a specific coelomic cavity inside the epistome, Fredericella sultana, Plumatella emarginata, and Lophopus crystallinus were studied on the ultrastructural level. In F. sultana and P. emarginata, the epistome contains a coelomic cavity. The cavity is confluent with the trunk coelom and lined by peritoneal and myoepithelial cells. The lophophore coelom extends into the tentacles and is connected to the trunk coelom by two weakly ciliated coelomic ducts on either side of the rectum. The lophophore coelom passes the epistome coelom on its anterior side. This region has traditionally been called the forked canal and hypothesized to represent the site of excretion. L. crystallinus lacks an epistome. It has a simple ciliated field where an epistome is situated in the other species. Underneath this field, the forked canal is situated. Compared with the other species, it is pronounced and exhibits a dense ciliation. Despite the occurrence of podocytes, which are prerequisites for a selected fluid transfer, there is no indication for an excretory function of the forked canal, especially as no excretory porus was found.

Microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri Pixell, 1912 (Lophophorata: Phoronida)

Russian Journal of Marine Biology, 2009

The microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri was investigated using histological techniques and electron microscopy. The collar nerve ring is basically formed by circular nerve fibers originating from sensitive cells of tentacles. The dorsal nerve plexus principally consists of large motor neurons. It is shown for the first time that the sensitive collar nerve ring immediately passes into the motor dorsal nerve plexus. The basic components of the nervous system have similar cytoarchitectonics and a layered structure. The first layer is formed by numerous nerve fibers surrounded by the processes of glia-like cells. The bodies of glia-like cells constitute the second layer. The third layer consists of neuron bodies overarched by the bodies of epidermal cells. The giant nervous fiber is accompanied by more than one hundred nerve fibers of a common structure and, thus, marks the true longitudinal nerve. The phoronids possess one or two longitudinal nerves. It is supposed that the plexus nature of the nervous system in phoronids may be related to their phylogenesis. A comparison of the nervous system organization and body plans among the Lophophorata suggests that the nervous system of phoronids cannot be considered as a reductive variant of the brachiopod nervous system. At the same time, the structure of the nervous system of bryozoans can be derived from that of phoronids.

Organogenesis during budding and lophophoral morphology of Hislopia malayensis Annandale, 1916 (Bryozoa, Ctenostomata)

BMC Developmental Biology, 2011

Background: Bryozoans represent a large lophotrochozoan phylum with controversially discussed phylogenetic position and in group relationships. Developmental processes during the budding of bryozoans are in need for revision. Just recently a study on a phylactolaemate bryozoan gave a comprehensive basis for further comparisons among bryozoans. The aim of this study is to gain more insight into developmental patterns during polypide formation in the budding process of bryozoans. Particular focus is laid upon the lophophore, also its condition in adults. For this purpose we studied organogenesis during budding and lophophoral morphology of the ctenostome bryozoan Hislopia malayensis. Results: Polypide buds develop on the frontal side of the developing cystid as proliferation of the epidermal and peritoneal layer. Early buds develop a lumen bordered by the inner budding layer resulting in the shape of a twolayered sac or vesicle. The hind-and midgut anlagen are first to develop as outpocketing of the prospective anal area. These grow towards the prospective mouth area where a comparatively small invagination marks the formation of the foregut. In between the prospective mouth and anus the ganglion develops as an invagination protruding in between the developing gut loop. Lophophore development starts with two lateral ridges which form tentacles very early. At the lophophoral base, intertentacular pits, previously unknown for ctenostomes, develop. The ganglion develops a circum-oral nerve ring from which the tentacle nerves branch off in adult zooids. Tentacles are innervated by medio-frontal nerves arising directly from the nerve ring, and medio-frontal and abfrontal nerves which originate both from an intertentacular fork. Conclusions: We are able to show distinct similarities among bryozoans in the formation of the different organ systems: a two-layered vesicle-like early bud, the ganglion forming as an invagination of the epidermal layer in between the prospective mouth and anal area, the digestive tract mainly forming as an outpocketing of the prospective anal area, and the lophophore forming from two lateral anlagen that first fuse on the oral and afterwards on the anal side. Future studies will concentrate on cyclostome budding to complement our knowledge on developmental patterns of bryozoans.

Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophorata)

Zoomorphology, 2001

Among other characteristics a trimeric coelomic compartmentation consisting of an anterior protocoel, followed by a mesocoel and a posterior metacoel is traditionally believed to substantiate the sister-group relationship between Lophophorata and Deuterostomia, together forming the Radialia. As molecular data cannot support this hypothesis a reanalysis of the coelomic cavities in Phoronida is undertaken, because corresponding coelomic compartmentation is widely accepted to support the Radialia hypothesis. A coelomic cavity can be recognized on the ultrastructural level because its lining is a true epithelium with polarized cells interconnected by apical adherens junctions. This study reveals that neither in larval nor adult Phoronis muelleri (Phoronida) an anterior cavity with such a lining is present. What on the light microscopic level leads to the impression of a cavity inside the larval episphere, actually is an enlarged subepidermal extracellular matrix with an amorphous, presumably gel-like filling, into which several muscle cells are embedded. Larvae, thus, possess only one coelomic cavity, the large trunk coelom of the larva which is adopted in the adult organization. The second coelomic cavity of adult P. muelleri, the lophophore coelom, develops as a double-layer of epithelialized mesodermal cells at the base of the adult tentacle buds and becomes fluid filled during metamorphosis. Like the larval episphere, larval tentacles and most parts of the blastocoel are filled by an amorphous matrix. Reanalysis of the literature and comparison with Brachiopoda and Bryozoa allows the hypothesis that a protocoel is lacking in all Lophophorata, and that merely two unpaired coelomic cavities, one tentacle and one trunk coelom, can be assumed for the ground pattern of this taxon. These results do not provide further evidence for the Radialia hypothesis, but also do not contradict it.

Reconstructing the neuromuscular ground pattern of phylactolaemate bryozoans: new data from the Lophopodidae

BMC Ecology and Evolution

Background The solely freshwater inhabiting Phylactolaemata is a sister taxon to all other bryozoans. Among phylactolaemates, Lophopodidae represents an early branching clade that is therefore crucial for ground pattern reconstruction. While more recent morphological data of most phylactolaemate families are present, data of lophopodids are scarce. The genus Asajirella especially, which was previously assigned to the family Pectinatellidae, lacks any detailed analysis with more recent morphological methods. Results This study provides the first morphological analyses of three lophopodid species using serial-sectioning histology and 3D reconstruction, but also immunocytochemical stainings and confocal laserscanning microscopy. There are several lophopodid-specific traits in the nervous system such as the large ganglion with extensive lumen and two prominent protrusions referred to as epistomial horns. The epistome in all lophopodids is rather small and dome-shaped. Contrary to previo...

Functional morphology of the tentacles and tentilla of Coeloplana bannworthi (Ctenophora, Platyctenida), an ectosymbiont of Diadema setosum (Echinodermata, Echinoida)

Zoomorphology, 1997

The tentacular apparatus of Coeloplana bannworthi consists of a pair of tentacles which bear, on their ventral side, numerous tentilla. Each tentacle extends from and retracts into a tentacular sheath. Tentacles and tentilla are made up of an axial core covered by an epidermis. The epidermis includes six cell types: covering cells, two types of gland cells (mucous cells and granular gland cells), two types of sensory cells (ciliated cells and hoplocytes), and collocytes, this last cell type being exclusively found in the tentilla. The core is made up of a fibrillar matrix, the mesoglea, which is crossed by nerve processes and two kinds of smooth muscle cells. Regular muscle cells are present in both the tentacles and tentilla while giant muscle cells occur exclusively in the tentilla. The retraction of the tentacular apparatus is an active phenomenon due to the contraction of both types of muscle cells. The extension is a passive phenomenon that occurs when the muscle cells relax. Tentacles and tentilla first extend slightly due to the rebound elasticity of the mesogleal fibers and then drag forces exerted by the water column enable the tentacular apparatus to lengthen totally. Once the tentacles and tentilla are extended, gland cells, sensory cells, and collocytes are exposed to the water column. Any swimming planktonic organism may stimulate the sensory cilia which initiates tentillum movements. Pegs of hoplocytes can then more easily contact the prey which results in a slight elevation of the nearby collocytes, the last being responsible for gluing the prey to the tentilla.& b d y :

Ganglion ultrastructure in phylactolaemate Bryozoa: Evidence for a neuroepithelium

Journal of Morphology, 2008

In contrast to other Bryozoa, members of the subtaxon Phylactolaemata bear a subepithelial cerebral ganglion that resembles a hollow vesicle rather than being compact. In older studies this ganglion was said to originate by an invagination of the pharyngeal epithelium. Unfortunately, documentation for this is fragmentary. In chordates the central nervous system also arises by an invagination-like process, but this mode is uncommon among invertebrate phyla. As a first attempt to gather more data about this phenomenon, cerebral ganglia in two phylactolaemate species, Fredericella sultana and Plumatella emarginata, were examined at the ultrastructural level. In both species the ganglion bears a small central lumen. The ganglionic cells are organized in the form of a neuroepithelium. They are polarized and interconnected by adherens junctions on their apical sides and reside on a basal lamina. The nerve cell somata are directed towards the central lumen, whereas the majority of nervous processes are distributed basally. Orientation of the neuroepithelial cells can be best explained by the possibility that they develop by invagination. A comparison with potential outgroups reveals that a neuroepithelial ganglion is at least derived. Since, however, a reliable phylogenetic system of the Bryozoa is missing, a decision on whether such a ganglion is apomorphic for Bryozoa or evolved within this taxon can hardly be made.