Trace Elements in Three Marine Birds Breeding on Reunion Island (Western Indian Ocean): Part 1—Factors Influencing Their Bioaccumulation (original) (raw)

Abstract

Seabird tissues collected between 2002 and 2004 from Barau's Petrel (Pterodroma baraui), Audubon's Shearwater (Puffinus lherminieri bailloni) and White-tailed Tropicbird (Phaethon lepturus) colonies on Reunion Island were analyzed for metallothioneins (MTs) and trace element content. The subcellular distribution between soluble and insoluble fractions of Cd, Cu, Fe, Mn, Se and Zn was determined in liver and kidney tissues. In both tissues, the soluble fraction of the cell concentrated most of the Cd and Se, whereas Fe, Mn and Zn were preferentially accumulated in the insoluble fraction. The distribution of these elements varied with the tissue, the age of the bird and the species. Furthermore, the distributions of Fe and Mn were somewhat influenced by the bird's physical condition. Metallothionein levels were measured in the soluble fraction after heat denaturation. The levels of these proteins varied from 5.5 ± 2.7 mg.g −1 d.w. to 11.4 ± 6.2 mg.g −1 d.w., depending on the species and the tissue considered. Metallothionein levels were significantly different between liver and kidney only in the White-tailed Tropicbird. In the three species, MT levels in kidney were significantly higher in adults than in juveniles. The bird's weight also had an influence on hepatic and renal MT levels, but not the gender nor the reproductive status. The implication of MTs in Cu and Zn homeostasis, and Cd and Hg detoxification are discussed. In addition, clues on Hg regulation by Se were found, especially in Barau's Petrel, where the levels of these two elements were very significantly correlated.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. Anan Y., Kunito T., Sakai H., Tanabe S. (2002), Subcellular distribution of trace elements in the liver of sea turtles, Mar. Poll. Bull. 45: 224-229.
  2. Bailey R. S. (1967), The pelagic distribution of seabirds in the Western Indian Ocean, Ibis 110: 492-493.
  3. Barré N., Barau A., Jouanin C. (1996), Oiseaux de la Réunion, Les Éditions du Pacifique, Paris.
  4. Brdička A. R. (1933), Polarographic studies with the dropping mercury method. A new test for proteins in the presence of cobalt salts in ammoniacal solution of ammonium chloride, Collect. Czech. Chem. Commun. 7: 112-128.
  5. Bremner I., Mehra R. K. (1991), Assay of extracellular metallothionein, in Methods in Enzymol- ogy, Vol. 205 of Metallochemistry, Part B, Metallothionein and related molecules, Academic Press, San Diego, California, pp. 60-70.
  6. Chan H. M. (1998), Metal accumulation and detoxification in humans, in Metal metabolism in aquatic environments, Ecotoxicology series, 7, Chapman and Hall, London UK, pp. 415-438.
  7. Chan H. M., Zhu L. F., Zhong R., Grant D., Goyer R. A., Cherian M. G. (1993), Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats, Toxicol. Appl. Pharmacol. 123(1): 89-96.
  8. Debacker V., Schiettecatte L.-S., Jauniaux T., Bouquegneau J.-M. (2001b), Influence of age, sex and body condition on zinc, copper, cadmium and metallothioneins in Common Guillemots (Uria aalge) stranded at the Belgian coast, Mar. Environ. Res. 52: 427-444.
  9. Decataldo A., Di Leo A., Giandomenico S., Cardellicchio N. (2004), Association of metals (mer- cury, cadmium and zinc) with metallothionein-like proteins in storage organs of stranded dolphins from the Mediterranean sea (Southern Italy), J. Environ. Monit. 6(4): 361-367.
  10. Duncan D. A., Klaverkamp J. F. (1983), Tolerance and resistance to cadmium in white suckers (Castostmus commersoni) previously exposed to cadmium, mercury, zinc or selenium, Can. J. Fish. Aquat. Sci. 40(2): 128-138.
  11. Eaton D. L., Stacey N. H., Wong K. L., Klaassen C. D. (1980), Dose-response effects of various metal ions on rat liver metallothionein, glutathion, heme oxygenase, and cytochrome P-450, Toxicol. Appl. Pharmacol. 50(2): 292-301.
  12. Elliott J. E., Scheuhammer A. M., Leighton F. A., Pearce P. A. (1992), Heavy metal and metal- lothionein concentrations in Atlantic Canadian seabirds, Arch. Environ. Contam. Toxicol. 22(1): 63-73.
  13. Gallien I., Caurant F., Bordes M., Bustamante P., Miramand P., Fernandez B., Quellard N., Babin P. (2001), Cadmium-containing granules in kidney tissue of the Atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe Islands, Comp. Biochem. Physiol. 130(3): 389-395.
  14. Hamer D. L. (1986), Metallothionein, Ann. Rev. Biochem. 55: 913-951.
  15. Hamilton S. J., Mehrle P. M. (1986), Evaluation of metallothionein measurement as a biological indicator of stress for cadmium in brook trout, Trans. Am. Fish. Soc. 116: 551-560.
  16. Hamza-Chaffai A., Cosson R. P., Amiard-Triquet C., Abed A. E. (1995), Physico-chemical forms of storage of metals (Cd, Cu and Zn) and metallothionein-like proteins in gills and liver of marine fish from Tunisian coast: ecotoxicological consequences, Comp. Biochem. Physiol. 111C(2): 329-341.
  17. Hogstrand C., Haux C. (1990), Metallothionein as an indicator of heavy metal exposure in two subtropical fish species, J. Exp. Mar. Biol. Ecol. 138: 69-84.
  18. Ikemoto T., Kunito T., Tanaka H., Baba N., Miyazaki N., Tanabe S. (2004), Detoxification mecha- nism of heavy metals in marine mammals and seabirds: Interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver, Arch. Environ. Contam. Toxicol 47(3): 402-413.
  19. Jaquemet S., Le Corre M., Weimerskirch H. (2004), Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs), Mar. Ecol. Prog. Ser. 268: 281-292.
  20. Kim E. Y., Murakami T., Saeki K., Tatsukawa R. (1996a), Mercury levels and its chemical form in tissues and organs of seabirds, Arch. Environ. Contam. Toxicol. 30(2): 259-266.
  21. Koeman J. H., Peters W. H. M., Koudstaal-Hoi C. H. M., Tjioe P. S., De Goeij J. J. M. (1973), Mercury-selenium correlations in marine mammals, Nature 245: 385-386.
  22. Magos L., Clarkson T. W., Sparrow S., Hudson A. R. (1987), Comparison of the protection given by selenite, selenomethionine and biological selenium against the renotoxicity of mercury, Arch. Toxicol. 60: 422-426.
  23. Martoja R., Berry J. P. (1980), Identification of tiemannite as a probable product of demethylation of mercury by selenium in cetaceans. A complement to the scheme of the biological cycle of mercury, Vie et Milieu 30(1): 7-10.
  24. Mason A. Z., Jenkins K. D. (1995), Metal detoxification in aquatic organisms, in J. Wiley, Sons, eds, Metal speciation and bioavailability in aquatic systems (Tessier A. & Turner D.R., eds.), IUPAC Series on analytic and physical chemistry of environmental systems, 3, Chichester, England, pp. 479-608.
  25. Nam D.-H., Anan Y., Ikemoto T., Tanabe S. (2005), Multielemental accumulation and its intra- cellular distribution in tissues of some aquatic birds, Mar. Pollut. Bull.
  26. Nigro M., Campana A., Lanzillotta E., Ferrara R. (2002), Mercury exposure and elimination rates in captive bottlenose dolphins, Mar. Pollut. Bull. 44(10): 1071-1075.
  27. Nordberg M. (1998), Metallothioneins: historical review and state of knowledge, Talanta 46: 243- 254.
  28. Osborn D. A. (1978), Naturally occuring cadmium and zinc binding protein from liver and kidney of Fulmarus glacialis, a pelagic North Atlantic seabird, Biochem. Pharmacol. 27: 822-824.
  29. Palmisano F., Cardellichio N., Zambonin P. G. (1995), Speciation of mercury in dolphin liver: a two stage mechanism for the demethylation accumulation process and role of selenium, Mar. Environ. Res. 40(2): 109-121.
  30. R Development Core Team (2005), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.
  31. Roesijadi G. (1996), Metallothionein and its role in toxic metal regulation, Comp. Biochem. Physiol. 113C(2): 117-123.
  32. Stahl J., Bartle J. A. (1991), Distribution, abundance and aspects of the pelagic ecology of Barau's Petrel (Pterodroma baraui) in the south-west Indian Ocean., Notornis 38: 211-225.
  33. Thompson J. A. J., Cosson R. P. (1984), An improved electrochemical method for the quantifica- tion of metallothionein in marine organisms, Mar. Environ. Res. 11: 137-152.
  34. Vallee B. L. (1995), The function of metallothionein, Neurochem. Int. 27(1): 23-33.
  35. Wenzel C., Adelung D. (1996), The suitability of oiled Guillemots (Uria aalge) as monitoring organisms for geographical comparisons of trace element contaminants, Arch. Environ. Con- tam. Toxicol. 31: 368-377.
  36. Zilmer M., Soomets U., Rehema A., Langel U. (2005), The Glutathione system as an attractive therapeutic target, Drug Design Reviews 2(2): 121-127.