Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach (original) (raw)
Abstract
AI
The paper investigates thermal boundary resistance (TBR) at the nanoscale between an aluminum film and an Al2O3 substrate, revealing a TBR value of 1.4 m²K/GW. It employs a multi-scale modeling approach to reconcile discrepancies observed in time-resolved thermo-reflectance experiments, demonstrating that non-equilibrium electronic and phononic behaviors persist at the nanoscale. The findings emphasize the limitations of traditional thermal capacitance models and expand the understanding of TBR applicable to similar metal-insulator interfaces.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (74)
- G. Chen, Nanoscale energy transport and conversion (Ox- ford University Press, 2005).
- T. Luo and G. Chen, Phys. Chem. Chem. Phys. 15, 3389 (2013).
- D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, et al., Appl. Phys. Rev. 1, 011305 (2014).
- K. M. Hoogeboom-Pot, J. N. Hernandez-Charpak, X. Gu, T. D. Frazer, E. H. Anderson, W. Chao, R. W. Falcone, R. Yang, M. M. Murnane, H. C. Kapteyn, and D. Nardi, Proc. Natl. Acad. Sci. USA 112, 4846 (2015).
- E. T. Swartz and R. O. Pohl, Rev. Mod. Phys 61, 605 (1989).
- A. L. Moore and L. Shi, Materials Today 17, 163 (2014).
- E. Pop, Nano Research 3, 147 (2010).
- E. Landry and A. McGaughey, Physical Review B 80, 165304 (2009).
- R. M. Costescu, M. A. Wall, and D. G. Cahill, Phys. Rev. B 67, 054302 (2003).
- A. Majumdar and P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).
- R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).
- D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
- M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. An- derson, M. M. Murnane, and H. C. Kapteyn, Nat. Mater. 9, 26 (2010).
- V. Juvé, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti, and F. Vallée, Phys. Rev. B 80, 195406 (2009).
- F. Banfi, V. Juvé, D. Nardi, S. D. Conte, C. Giannetti, G. Ferrini, N. D. Fatti, and F. Vallée, Appl. Phys. Lett. 100, 011902 (2012).
- T. Stoll, P. Maioli, A. Crut, S. Rodal-Cedeira, I. Pastoriza- Santos, F. Vallée, and N. Del Fatti, J. Phys. Chem. C 119, 12757 (2015).
- M. N. Ozisik, Heat conduction (John Wiley & Sons, 1993).
- J. Lombard, F. Detcheverry, and S. Merabia, J. Phys.: Condens. Matt. 27, 015007 (2014).
- N. Chkhalo, M. Fedorchenko, A. Zarodyshev, V. Chernov, V. Kirillov, and A. Nikiforov, Nucl. Instr. Meth. Phys. Res. A 359, 127 (1995).
- D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, Appl. Phys. Lett. 100, 253106 (2012).
- M. Ksiazek, N. Sobczak, B. Mikulowski, W. Radziwill, and I. Surowiak, Mater. Sci. Eng. A 324, 162 (2002).
- S. Plimpton, J. Comp. Phys. 117, 1 (1995).
- I. Lazić and B. J. Thijsse, Computational Materials Science 53, 483 (2012).
- D. Scopece and B. J. Thijsse, Computational Materials Science 104, 143 (2015).
- F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11996 (1994).
- X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. Neu- rock, Phys. Rev. B 69, 035402 (2004).
- D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).
- Refer to Ref. [73] for a review of NEMD and a thorough discussion on different formalisms avalable for calculating TBR.
- C. Melis, G. Barbarino, and L. Colombo, Phys. Rev. B 92, 245408 (2015).
- D. P. Sellan, E. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 81, 214305 (2010).
- C. Melis, R. Dettori, S. Vandermeulen, and L. Colombo, Eu. Phys. J. B 87, 96 (2014), 10.1140/epjb/e2014-50119-0.
- G. Balasubramanian and I. K. Puri, Appl. Phys. Lett. 99, 013116 (2011), http://dx.doi.org/10.1063/1.3607477.
- M. Vermeersch, R. Sporken, P. Lambin, and R. Caudano, Surf. Sci. 235, 5 (1990).
- M. Vermeersch, F. Malengreau, R. Sporken, and R. Cau- dano, Surf. Sci. 323, 175 (1995).
- D. Medlin, K. McCarty, R. Hwang, S. Guthrie, and M. Baskes, Thin Solid Films 299, 110 (1997).
- D. J. Siegel, L. G. Hector, and J. B. Adams, Phys. Rev. B 65, 085415 (2002).
- G. Pilania, B. J. Thijsse, R. G. Hoagland, I. Lazić, S. M. Valone, and X.-Y. Liu, Sci. Rep. 4, 4485 (2014).
- H. Mei, Q. Liu, L. Liu, X. Lai, W. She, and P. Zhai, Appl. Surf. Sci. 324, 538 (2015).
- D. G. Cahill, S.-M. Lee, and T. I. Selinder, J. Appl. Phys. 83, 5783 (1998).
- A. Jain and A. J. H. McGaughey, Phys. Rev. B 93, 081206 (2016).
- Y. Wang, Z. Lu, and X. Ruan, Journal of Applied Physics 119, 225109 (2016), http://dx.doi.org/10.1063/1.4953366.
- J. Chen, G. Zhang, and B. Li, J. Appl. Phys. 112, 064319 (2012).
- D. Nardi, M. Travagliati, M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, G. Ferrini, F. Parmigiani, and F. Banfi, Nano Lett. 11, 4126 (2011).
- F. Banfi, F. Pressacco, B. Revaz, C. Giannetti, D. Nardi, G. Ferrini, and F. Parmigiani, Phys. Rev. B 81, 155426 (2010).
- C. Giannetti, F. Banfi, D. Nardi, G. Ferrini, and F. Parmi- giani, Photon. J. IEEE 1, 21 (2009).
- P. E. Hopkins, R. N. Salaway, R. J. Stevens, and P. M. Norris, Int. J. Thermophys. 28, 947 (2007).
- R. Rurali, L. Colombo, X. Cartoixà, Ø. Wilhelmsen, T. T. Trinh, D. Bedeaux, and S. Kjelstrup, Physical Chemistry Chemical Physics 18, 13741 (2016).
- H.-K. Lyeo and D. G. Cahill, Phys. Rev. B 73, 144301 (2006).
- P. E. Hopkins and P. M. Norris, ASME J. Heat Trans. 131(2), 022402 (2009).
- S. Sadasivam, U. V. Waghmare, and T. S. Fisher, J. App. Phys. 117, 134502 (2015).
- A. Sergeev, Phys. Rev. B 58, R10199 (1998).
- M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1957).
- F. Cverna, ASM Ready Reference: Thermal properties of metal (ASM International, 2002).
- P. B. Allen, Phys. Rev. B 36, 2920 (1987).
- Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).
- J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, Appl. Opt. 38, 3614 (1999).
- The value κ Al =κe+κ ph with κ Al =237 W/mK from Ref. [ 64], whereas κ ph =7 W/mK is obtained from NEMD cal- culations in Section III, hence κe=230 W/mK.
- 58 The actual numerics has been implemented assigning the proper symmetry to Pp, Pp=Pp(r,z,t), as dictated by the pump laser gaussian profile, nevertheless, within the probed area, the problem is substantially 1D. Further de- tails may be found in Ref. [74].
- A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
- H. Malitson and M. J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972).
- As discussed in subsection III C, the value R ph does not depend on the Al thickness, the small fluctuations reported in Fig.5 being due to numerical instabilities.
- M. J. Weber, Handbook of optical materials (CRC press, 2001).
- As for the initial conditions we have checked the effect of the cumulative effect of the train of pulses from a cavity- dumped laser apparatus with repetition rate of 1 MHz (a cavity damped system has been assumed in order to avoid excessive cumulated heating) following Ref. [44]. The out- come is that, given the present laser parameters and mate- rials combination, assuming a spatially constant tempera- ture T0=298 K is a reasonable approximation.
- N. Ashcroft and N. D. Mermin, Solid State Physics (Saun- ders College Publishers, 1976).
- P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey Jr, and A. N. Smith, Review of scientific instruments 74, 400 (2003).
- C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmi- giani, and D. Mihailovic, Adv. Phys. 65, 58 (2016).
- P. E. Hopkins, K. Hattar, T. Beechem, J. F. Ihlefeld, E. S. Piekos, and D. L. Medlin, Applied Physics Letters 98 (2011).
- Reference 11 reports in the main text a value of R ph ∼10 m 2 K/GW, nevertheless, upon digitazing the experimental values therein reported, we retrieve 5.5 m 2 K/GW.
- Y. Wang, X. Ruan, and A. K. Roy, Phys. Rev. B 85, 205311 (2012).
- D. Campi, D. Donadio, G. C. Sosso, J. Behler, and M. Bernasconi, J. Appl. Phys. 117, 015304 (2015).
- J. Ordonez-Miranda, J. J. Alvarado-Gil, and R. Yang, J. Appl. Phys. 109, 094310 (2011).
- The explicit expression for Re is the fourth term on the right side of Eq.11 in Ref. [71].
- R. Dettori, C. Melis, X. Cartoixá, R. Rurali, and L. Colombo, Advances in Physics: X 1, 246 (2016).
- C. Giannetti, B. Revaz, F. Banfi, M. Montagnese, G. Fer- rini, C. F, S. Maccalli, P. Vavassori, G. Oliviero, E. Bon- tempi, V. Depero, L. E.and Metlushko, and F. Parmigiani, Phys. Rev. B 76, 125413 (2007).