Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach (original) (raw)

Abstract

sparkles

AI

The paper investigates thermal boundary resistance (TBR) at the nanoscale between an aluminum film and an Al2O3 substrate, revealing a TBR value of 1.4 m²K/GW. It employs a multi-scale modeling approach to reconcile discrepancies observed in time-resolved thermo-reflectance experiments, demonstrating that non-equilibrium electronic and phononic behaviors persist at the nanoscale. The findings emphasize the limitations of traditional thermal capacitance models and expand the understanding of TBR applicable to similar metal-insulator interfaces.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (74)

  1. G. Chen, Nanoscale energy transport and conversion (Ox- ford University Press, 2005).
  2. T. Luo and G. Chen, Phys. Chem. Chem. Phys. 15, 3389 (2013).
  3. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, et al., Appl. Phys. Rev. 1, 011305 (2014).
  4. K. M. Hoogeboom-Pot, J. N. Hernandez-Charpak, X. Gu, T. D. Frazer, E. H. Anderson, W. Chao, R. W. Falcone, R. Yang, M. M. Murnane, H. C. Kapteyn, and D. Nardi, Proc. Natl. Acad. Sci. USA 112, 4846 (2015).
  5. E. T. Swartz and R. O. Pohl, Rev. Mod. Phys 61, 605 (1989).
  6. A. L. Moore and L. Shi, Materials Today 17, 163 (2014).
  7. E. Pop, Nano Research 3, 147 (2010).
  8. E. Landry and A. McGaughey, Physical Review B 80, 165304 (2009).
  9. R. M. Costescu, M. A. Wall, and D. G. Cahill, Phys. Rev. B 67, 054302 (2003).
  10. A. Majumdar and P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).
  11. R. J. Stoner and H. J. Maris, Phys. Rev. B 48, 16373 (1993).
  12. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).
  13. M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. An- derson, M. M. Murnane, and H. C. Kapteyn, Nat. Mater. 9, 26 (2010).
  14. V. Juvé, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti, and F. Vallée, Phys. Rev. B 80, 195406 (2009).
  15. F. Banfi, V. Juvé, D. Nardi, S. D. Conte, C. Giannetti, G. Ferrini, N. D. Fatti, and F. Vallée, Appl. Phys. Lett. 100, 011902 (2012).
  16. T. Stoll, P. Maioli, A. Crut, S. Rodal-Cedeira, I. Pastoriza- Santos, F. Vallée, and N. Del Fatti, J. Phys. Chem. C 119, 12757 (2015).
  17. M. N. Ozisik, Heat conduction (John Wiley & Sons, 1993).
  18. J. Lombard, F. Detcheverry, and S. Merabia, J. Phys.: Condens. Matt. 27, 015007 (2014).
  19. N. Chkhalo, M. Fedorchenko, A. Zarodyshev, V. Chernov, V. Kirillov, and A. Nikiforov, Nucl. Instr. Meth. Phys. Res. A 359, 127 (1995).
  20. D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, Appl. Phys. Lett. 100, 253106 (2012).
  21. M. Ksiazek, N. Sobczak, B. Mikulowski, W. Radziwill, and I. Surowiak, Mater. Sci. Eng. A 324, 162 (2002).
  22. S. Plimpton, J. Comp. Phys. 117, 1 (1995).
  23. I. Lazić and B. J. Thijsse, Computational Materials Science 53, 483 (2012).
  24. D. Scopece and B. J. Thijsse, Computational Materials Science 104, 143 (2015).
  25. F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11996 (1994).
  26. X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. Neu- rock, Phys. Rev. B 69, 035402 (2004).
  27. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).
  28. Refer to Ref. [73] for a review of NEMD and a thorough discussion on different formalisms avalable for calculating TBR.
  29. C. Melis, G. Barbarino, and L. Colombo, Phys. Rev. B 92, 245408 (2015).
  30. D. P. Sellan, E. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 81, 214305 (2010).
  31. C. Melis, R. Dettori, S. Vandermeulen, and L. Colombo, Eu. Phys. J. B 87, 96 (2014), 10.1140/epjb/e2014-50119-0.
  32. G. Balasubramanian and I. K. Puri, Appl. Phys. Lett. 99, 013116 (2011), http://dx.doi.org/10.1063/1.3607477.
  33. M. Vermeersch, R. Sporken, P. Lambin, and R. Caudano, Surf. Sci. 235, 5 (1990).
  34. M. Vermeersch, F. Malengreau, R. Sporken, and R. Cau- dano, Surf. Sci. 323, 175 (1995).
  35. D. Medlin, K. McCarty, R. Hwang, S. Guthrie, and M. Baskes, Thin Solid Films 299, 110 (1997).
  36. D. J. Siegel, L. G. Hector, and J. B. Adams, Phys. Rev. B 65, 085415 (2002).
  37. G. Pilania, B. J. Thijsse, R. G. Hoagland, I. Lazić, S. M. Valone, and X.-Y. Liu, Sci. Rep. 4, 4485 (2014).
  38. H. Mei, Q. Liu, L. Liu, X. Lai, W. She, and P. Zhai, Appl. Surf. Sci. 324, 538 (2015).
  39. D. G. Cahill, S.-M. Lee, and T. I. Selinder, J. Appl. Phys. 83, 5783 (1998).
  40. A. Jain and A. J. H. McGaughey, Phys. Rev. B 93, 081206 (2016).
  41. Y. Wang, Z. Lu, and X. Ruan, Journal of Applied Physics 119, 225109 (2016), http://dx.doi.org/10.1063/1.4953366.
  42. J. Chen, G. Zhang, and B. Li, J. Appl. Phys. 112, 064319 (2012).
  43. D. Nardi, M. Travagliati, M. E. Siemens, Q. Li, M. M. Murnane, H. C. Kapteyn, G. Ferrini, F. Parmigiani, and F. Banfi, Nano Lett. 11, 4126 (2011).
  44. F. Banfi, F. Pressacco, B. Revaz, C. Giannetti, D. Nardi, G. Ferrini, and F. Parmigiani, Phys. Rev. B 81, 155426 (2010).
  45. C. Giannetti, F. Banfi, D. Nardi, G. Ferrini, and F. Parmi- giani, Photon. J. IEEE 1, 21 (2009).
  46. P. E. Hopkins, R. N. Salaway, R. J. Stevens, and P. M. Norris, Int. J. Thermophys. 28, 947 (2007).
  47. R. Rurali, L. Colombo, X. Cartoixà, Ø. Wilhelmsen, T. T. Trinh, D. Bedeaux, and S. Kjelstrup, Physical Chemistry Chemical Physics 18, 13741 (2016).
  48. H.-K. Lyeo and D. G. Cahill, Phys. Rev. B 73, 144301 (2006).
  49. P. E. Hopkins and P. M. Norris, ASME J. Heat Trans. 131(2), 022402 (2009).
  50. S. Sadasivam, U. V. Waghmare, and T. S. Fisher, J. App. Phys. 117, 134502 (2015).
  51. A. Sergeev, Phys. Rev. B 58, R10199 (1998).
  52. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1957).
  53. F. Cverna, ASM Ready Reference: Thermal properties of metal (ASM International, 2002).
  54. P. B. Allen, Phys. Rev. B 36, 2920 (1987).
  55. Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).
  56. J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, Appl. Opt. 38, 3614 (1999).
  57. The value κ Al =κe+κ ph with κ Al =237 W/mK from Ref. [ 64], whereas κ ph =7 W/mK is obtained from NEMD cal- culations in Section III, hence κe=230 W/mK.
  58. 58 The actual numerics has been implemented assigning the proper symmetry to Pp, Pp=Pp(r,z,t), as dictated by the pump laser gaussian profile, nevertheless, within the probed area, the problem is substantially 1D. Further de- tails may be found in Ref. [74].
  59. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
  60. H. Malitson and M. J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972).
  61. As discussed in subsection III C, the value R ph does not depend on the Al thickness, the small fluctuations reported in Fig.5 being due to numerical instabilities.
  62. M. J. Weber, Handbook of optical materials (CRC press, 2001).
  63. As for the initial conditions we have checked the effect of the cumulative effect of the train of pulses from a cavity- dumped laser apparatus with repetition rate of 1 MHz (a cavity damped system has been assumed in order to avoid excessive cumulated heating) following Ref. [44]. The out- come is that, given the present laser parameters and mate- rials combination, assuming a spatially constant tempera- ture T0=298 K is a reasonable approximation.
  64. N. Ashcroft and N. D. Mermin, Solid State Physics (Saun- ders College Publishers, 1976).
  65. P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey Jr, and A. N. Smith, Review of scientific instruments 74, 400 (2003).
  66. C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmi- giani, and D. Mihailovic, Adv. Phys. 65, 58 (2016).
  67. P. E. Hopkins, K. Hattar, T. Beechem, J. F. Ihlefeld, E. S. Piekos, and D. L. Medlin, Applied Physics Letters 98 (2011).
  68. Reference 11 reports in the main text a value of R ph ∼10 m 2 K/GW, nevertheless, upon digitazing the experimental values therein reported, we retrieve 5.5 m 2 K/GW.
  69. Y. Wang, X. Ruan, and A. K. Roy, Phys. Rev. B 85, 205311 (2012).
  70. D. Campi, D. Donadio, G. C. Sosso, J. Behler, and M. Bernasconi, J. Appl. Phys. 117, 015304 (2015).
  71. J. Ordonez-Miranda, J. J. Alvarado-Gil, and R. Yang, J. Appl. Phys. 109, 094310 (2011).
  72. The explicit expression for Re is the fourth term on the right side of Eq.11 in Ref. [71].
  73. R. Dettori, C. Melis, X. Cartoixá, R. Rurali, and L. Colombo, Advances in Physics: X 1, 246 (2016).
  74. C. Giannetti, B. Revaz, F. Banfi, M. Montagnese, G. Fer- rini, C. F, S. Maccalli, P. Vavassori, G. Oliviero, E. Bon- tempi, V. Depero, L. E.and Metlushko, and F. Parmigiani, Phys. Rev. B 76, 125413 (2007).