ReviewDNA barcode information for the sugar cane moth borer Diatraea saccharalis (original) (raw)

DNA Barcode Sequencing from Old Type Specimens as a Tool in Taxonomy: A Case Study in the Diverse Genus Eois (Lepidoptera: Geometridae)

PLoS ONE, 2012

In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types) of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each) to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%). Sequence length ranged from 121 bp to full barcode sequences (658 bp), the average sequence length was ,500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible.

Sequence and analysis of the mitochondrial DNA control region in the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae

Brazilian Archives of Biology and Technology, 2008

This study aimed at the sequence and analysis of the mtDNA control region (CR) of the Diatraea saccharalis. The genome PCR amplification was performed using the complementary primers to the flanking regions of Bombyx mori CR mitochondrial segment. The sequencing revealed that the amplified product was 568 bp long, which was smaller than that observed for B. mori (725 bp). Within the amplified segment, a sequence with 338 nucleotides was identified as the control region, which displayed a high AT content (93.5%). The D. saccharalis mtDNA CR multiple sequence alignment analysis showed that this region had high similarity with the Lepidoptera Cydia pomonella.

Towards a global DNA barcode reference library for quarantine identifications of lepidopteran stemborers, with an emphasis on sugarcane pests

Scientific Reports, 2019

Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world's most prolific crop, and several stemborer species from the families Noctuidae, tortricidae, Crambidae and pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity efforts are hampered by the difficulty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identified in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the effectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecific diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identified 24 instances of identification errors in the online database, which has hampered unambiguous stemborer identification using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confirm species boundaries.

DNA barcodes distinguish species of tropical Lepidoptera

Proceedings of the National Academy of Sciences, 2006

Although central to much biological research, the identification of species is often difficult. The use of DNA barcodes, short DNA sequences from a standardized region of the genome, has recently been proposed as a tool to facilitate species identification and discovery. However, the effectiveness of DNA barcoding for identifying specimens in species-rich tropical biotas is unknown. Here we show that cytochrome c oxidase I DNA barcodes effectively discriminate among species in three Lepidoptera families from Area de Conservació n Guanacaste in northwestern Costa Rica. We found that 97.9% of the 521 species recognized by prior taxonomic work possess distinctive cytochrome c oxidase I barcodes and that the few instances of interspecific sequence overlap involve very similar species. We also found two or more barcode clusters within each of 13 supposedly single species. Covariation between these clusters and morphological and͞or ecological traits indicates overlooked species complexes. If these results are general, DNA barcoding will significantly aid species identification and discovery in tropical settings.

Assessing the Value of DNA Barcodes for Molecular Phylogenetics: Effect of Increased Taxon Sampling in Lepidoptera

2011

Background: A common perception is that DNA barcode datamatrices have limited phylogenetic signal due to the small number of characters available per taxon. However, another school of thought suggests that the massively increased taxon sampling afforded through the use of DNA barcodes may considerably increase the phylogenetic signal present in a datamatrix. Here I test this hypothesis using a large dataset of macrolepidopteran DNA barcodes. Methodology/Principal Findings: Taxon sampling was systematically increased in datamatrices containing macrolepidopteran DNA barcodes. Sixteen family groups were designated as concordance groups and two quantitative measures; the taxon consistency index and the taxon retention index, were used to assess any changes in phylogenetic signal as a result of the increase in taxon sampling. DNA barcodes alone, even with maximal taxon sampling (500 species per family), were not sufficient to reconstruct monophyly of families and increased taxon sampling generally increased the number of clades formed per family. However, the scores indicated a similar level of taxon retention (species from a family clustering together) in the cladograms as the number of species included in the datamatrix was increased, suggesting substantial phylogenetic signal below the 'family' branch. Conclusions/Significance: The development of supermatrix, supertree or constrained tree approaches could enable the exploitation of the massive taxon sampling afforded through DNA barcodes for phylogenetics, connecting the twigs resolved by barcodes to the deep branches resolved through phylogenomics.

Delineating Species with DNA Barcodes: A Case of Taxon Dependent Method Performance in Moths

PloS one

The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs), few studies have compared their performance. This study compares the performance of one morphology-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC) methods on two groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal a striking difference in performance between the two taxa with all four DNA-based methods. OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65%) OTU match with reference species while OTU counts were more congruent and performance was higher (ca. 90%) in the ...

DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity

ZooKeys, 2020

For the first time, a nearly complete barcode library for European Gelechiidae is provided. DNA barcode sequences (COI gene-cytochrome c oxidase 1) from 751 out of 865 nominal species, belonging to 105 genera, were successfully recovered. A total of 741 species represented by specimens with sequences ≥ 500bp and an additional ten species represented by specimens with shorter sequences were used to produce 53 NJ trees. Intraspecific barcode divergence averaged only 0.54% whereas distance to the Nearest-Neighbour species averaged 5.58%. Of these, 710 species possessed unique DNA barcodes, but 31 species could not be reliably discriminated because of barcode sharing or partial barcode overlap. Species

DNA barcodes as a tool in biodiversity research: testing pre-existing taxonomic hypotheses in Delphic Apollo butterflies (Lepidoptera, Papilionidae)

Systematics and Biodiversity, 2016

Numerous studies have demonstrated that DNA barcoding is an effective tool for detecting DNA clusters, which can be viewed as operational taxonomic units (OTUs), useful for biodiversity research. Frequently, the OTUs in these studies remained unnamed, not connected with pre-existing taxonomic hypotheses, and thus did not really contribute to feasible estimation of species number and adjustment of species boundaries. For the majority of organisms, taxonomy is very complicated with numerous, often contradictory interpretations of the same characters, which may result in several competing checklists using different specific and subspecific names to describe the same sets of populations. The highly species-rich genus Parnassius (Lepidoptera: Papilionidae) is but one example, such as several mutually exclusive taxonomic systems have been suggested to describe the phenotypic diversity found among its populations. Here we provide an explicit flow chart describing how the DNA barcodes can be combined with the existing knowledge of morphologybased taxonomy and geography (sympatry versus allopatry) of the studied populations in order to support, reject or modify the pre-existing taxonomic hypotheses. We then apply this flow chart to reorganize the taxa within the Parnassius delphius species group, solving long-standing taxonomic problems.