Murine Immune Responses to Liver-Stage Antigen 1 Protein FMP011, a Malaria Vaccine Candidate, Delivered with Adjuvant AS01B or AS02A (original) (raw)
Related papers
Tropical Diseases, Travel Medicine and Vaccines
Background: Efforts in search of lasting malaria vaccine have led to the development of transgenic rodent malaria parasites. As a result, wild type Plasmodium berghei ANKA (WTPbA) has recently been transformed to express mouse interferon gamma (mIFN-γ). The immunomodulatory effect of this transgenic parasite on WTPbA infection has been demonstrated. However, the protective immune responses after repeated immunization with soluble lysate of this parasite has not been investigated. Methods: Soluble lysate of transgenic PbA (TPbA) was prepared and concentration of IFN-γ in lysate determined by ELISA. Four groups of 20 BALB/c mice each (two treatment groups and two control groups) were setup. Treatment Groups 1 and 2 were primed (at day 0) with lysate of TPbA containing 75 pg/ml IFN-γ and live TPbA parasites respectively. Infection in Group 2 mice was cured with Coartem™ at 450 mg/kg for 3 days. At day 14 post-priming, both groups were boosted twice at day 14 and day 28 with lysate of TPbA containing 75 pg/ml IFN-γ and 35 pg/ ml IFN-γ respectively. Blood and spleen samples were collected at day 0, day 14, day 21 and day 28 for preparation of serum and cell cultures respectively. Serum IgG and cytokines (TNF-α and IFN-γ) levels in culture supernatant were measred by ELISA.Survivorship and parasitemia were daily monitored for 21 days. Data were statistically analyzed using ANOVA student's t test. A p value of <0.05 was considered significant. Results: At day 28 post-priming, IFN-γ production in Group 1 was tenfold higher than in RBC control group (p = 0. 070) There was significant difference in IFN-γ production among the groups at day 28 (p < 0.0001). TNF-α production in Group 1 mice increased fourfold in Group 2 mice from day 14 to day 28 post-immunization (p = 0. 0005). There was no significant effect on serum IgG production. Mice in treatment groups survived 5 to 4 days longer compared to non-immunized group. Conclusion: The study has demonstrated that, repeated immunization with soluble lysate of TPbA induces Th 1 response leading to increased IFN-γ and TNF-γ production.
Infection and Immunity, 2003
The increasing death toll from malaria, due to the decreasing effectiveness of current prophylactic and therapeutic regimens, has sparked a search for alternative methods of control, such as vaccines. Although several single proteins have shown some promise as subunit vaccines against sexual blood stages in experimental systems, it is clear that multicomponent vaccines are required. Many logistic difficulties make such an approach prohibitively expensive. In an effort to try to overcome some of these issues, we examined the possibility of oral immunization as a route for inducing host protective immunity. We report here that oral feeding of a malaria protein induced serum antibody levels similar to those induced by intraperitoneal immunization with Freund's adjuvant. Further, responses to conformational epitopes were induced. In the rodent challenge system, significant levels of protection to lethal challenge with malaria were induced in mice. The protective efficacy was highly correlated with antibody levels, which depended on the antigen dosage and required cholera toxin subunit B as an oral adjuvant. These findings offer new approaches to the development of a malaria vaccine and provide justification for the investigation of transgenic plants as a means of vaccine delivery.
Infection and Immunity, 2005
Plasmodium falciparum liver-stage antigen 1 (LSA-1) is expressed solely in infected hepatocytes and is thought to have a role in liver schizogony and merozoite release. Specific humoral, cellular, and cytokine immune responses to LSA-1 are well documented, with epitopes identified that correlate with antibody production, proliferative T-cell responses, or cytokine induction. With the goal of developing a vaccine against this preerythrocyte-stage protein, we undertook the good manufacturing practices (GMP) manufacture of a recombinant LSA-1 construct, LSA-NRC, incorporating the N-and C-terminal regions of the protein and two of the centrally placed 17-amino-acid repeats. To improve the protein yield, a method of codon harmonization was employed to reengineer the gene sequence for expression in Escherichia coli. A 300-liter GMP fermentation produced 8 kg of bacterial cell paste, and a three-step column chromatographic method yielded 8 mg of purified antigen per g of paste. The final bulk protein was >98% pure, demonstrated long-term stability, and contained <0.005 endotoxin units per 50 g of protein.
Vaccine, 2007
We report the first safety and immunogenicity trial of the Plasmodium falciparum vaccine candidate FMP2.1/AS02A, a recombinant E. coli-expressed protein based upon the apical membrane antigen-1 (AMA-1) of the 3D7 clone formulated with the AS02A adjuvant. We conducted an open-label, staggered-start, dose-escalating Phase I trial in 23 malaria-naïve volunteers who received 8, 20 or 40 g of FMP2.1 in a fixed volume of 0.5 mL of AS02A on a 0, 1, and 2 month schedule. Nineteen of 23 volunteers received all three scheduled immunizations. The most frequent solicited local and systemic adverse events associated with immunization were injection site pain (68%) and headache (29%). There were no significant laboratory abnormalities or vaccine-related serious adverse events. All volunteers seroconverted after second immunization as determined by ELISA. Immune sera recognized sporozoites and merozoites by immunofluorescence assay (IFA), and exhibited both growth inhibition and processing inhibition activity against homologous (3D7) asexual stage parasites. Post-immunization, peripheral blood mononuculear cells exhibited FMP2.1-specific lymphoproliferation and IFN-␥ and IL-5 ELISPOT assay responses. This is the first PfAMA-1-based vaccine shown to elicit both potent humoral and cellular immunity in humans. Encouraged by the potential of FMP1/AS02A to target host immunity against PfAMA-1 that is known to be expressed by sporozoite, hepatic and erythrocytic stages, we have initiated field trials of FMP2.1/AS02A in an endemic population in the Republic of Mali.
Vaccine, 2007
We report the first safety and immunogenicity trial of the Plasmodium falciparum vaccine candidate FMP2.1/AS02A, a recombinant E. coli-expressed protein based upon the apical membrane antigen-1 (AMA-1) of the 3D7 clone formulated with the AS02A adjuvant. We conducted an open-label, staggered-start, dose-escalating Phase I trial in 23 malaria-naïve volunteers who received 8, 20 or 40 g of FMP2.1 in a fixed volume of 0.5 mL of AS02A on a 0, 1, and 2 month schedule. Nineteen of 23 volunteers received all three scheduled immunizations. The most frequent solicited local and systemic adverse events associated with immunization were injection site pain (68%) and headache (29%). There were no significant laboratory abnormalities or vaccine-related serious adverse events. All volunteers seroconverted after second immunization as determined by ELISA. Immune sera recognized sporozoites and merozoites by immunofluorescence assay (IFA), and exhibited both growth inhibition and processing inhibition activity against homologous (3D7) asexual stage parasites. Post-immunization, peripheral blood mononuculear cells exhibited FMP2.1-specific lymphoproliferation and IFN-␥ and IL-5 ELISPOT assay responses. This is the first PfAMA-1-based vaccine shown to elicit both potent humoral and cellular immunity in humans. Encouraged by the potential of FMP1/AS02A to target host immunity against PfAMA-1 that is known to be expressed by sporozoite, hepatic and erythrocytic stages, we have initiated field trials of FMP2.1/AS02A in an endemic population in the Republic of Mali.
Microbes and Infection, 2014
The newly identified GPI-anchored Plasmodium vivax merozoite surface protein 1 paralog (MSP1P) has a highly antigenic C-terminus that binds erythrocytes. To characterize the antigenicity and immunogenicity of two regions (PvMSP1P-19 and -33) of the highly conserved Cterminus of MSP1P relative to PvMSP1-19, 30 P. vivax malaria-infected patients and two groups of mice (immunized with PvMSP1P-19 or -33) were tested for IgG subclass antibodies against PvMSP1P-19 and -33 antigens. In the patients infected with P. vivax, IgG1 and IgG3 levels were significantly higher than those levels in healthy individuals, and were the predominant response to the two C-terminal fragments of PvMSP1P ( p < 0.05). In mice immunized with PvMSP1P-19, IgG1 levels were the highest while IgG2b levels were similar to IgG1 levels. The levels of Th1 cytokines in mice immunized with PvMSP1P-19 or -33 were significantly higher than those in mice immunized with PvMSP1-19 ( p < 0.05). Our results indicate that: (i) IgG1 and IgG3 (IgG2b in mice) are predominant IgG subclasses in both patients infected with P. vivax and mice immunized with PvMSP1P-19 or -33; (ii) the C-terminus of MSP1P induces a Th1-cytokine response. This immune profiling study provides evidence that MSP1P may be a potential candidate for vivax vaccine.
Vaccine, 1997
Plasmodium yoelii merozoite su$ace protein-l in liposomes or combined with the formulations SBAS2.1 and SBAS2, were protected against a lethal malaria infection. The protection achieved with these adjuvants developed for clinical use was as good as or better than that achieved with Freund's adjuvant. A parasite-specific response was needed .for protection. Analysis of the immunoglobulin sub-class response showed that MSP-l-specific IgGl, and to a lesser extent IgG2a and IgG2b, were induced, suggesting that these antibodies were important for protection. Mice passively immunized with serum or purified IgG from vaccinated mice had delayed onset of parasitemia and were able to control the infection. 0 1997 Elsevier Science Ltd.