TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury (original) (raw)
Related papers
Brain-derived TNFα mediates neuropathic pain
Brain Research, 1999
Neuropathic pain is a chronic pain state that develops a central component following acute nerve injury. However, the pathogenic mechanisms involved in the expression of this central component are not completely understood. We have investigated the role of Ž . brain-associated TNF in the evolution of hyperalgesia in the chronic constriction injury CCI model of neuropathic pain. Thermal Ž . nociceptive threshold has been assessed in rats male, Sprague-Dawley that have undergone loose, chromic gut ligature placement Ž . around the sciatic nerve. Total levels of TNF in regions of the brain, spinal cord and plasma have been assayed WEHI-13VAR bioassay . Bioactive TNF levels are elevated in the hippocampus. During the period of injury, hippocampal noradrenergic neurotransmission Ž . demonstrates a decrease in stimulated norepinephrine NE release, concomitant with elevated hippocampal TNF levels. Continuous Ž . Ž . intracerebroventricular i.c.v. microinfusion of TNF-antibodies Abs starting at four days, but not six days, following ligature placement completely abolishes the hyperalgesic response characteristic of this model, as assessed by the 588C hot-plate test. Antibody infusion does not decrease spinal cord or plasma levels of TNF. Continuous i.c.v. microinfusion of rrTNFa exacerbates the hyperalgesic response by ligatured animals, and induces a hyperalgesic response in animals not receiving ligatures. Likewise, field-stimulated hippocampal adrenergic neurotransmission is decreased upon continuous i.c.v. microinfusion of TNF. These results indicate an important role of brain-derived TNF, both in the pathology of neuropathic pain, as well as in fundamental pain perception. q
Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms
PAIN, 2012
The manifestation of chronic, neuropathic pain includes elevated levels of the cytokine tumor necrosis factor-alpha (TNF). Previously, we have shown that the hippocampus, an area of the brain most notable for its role in learning and memory formation, plays a fundamental role in pain sensation. Using an animal model of peripheral neuropathic pain, we have demonstrated that intracerebroventricular infusion of a TNF antibody adjacent to the hippocampus completely alleviated pain. Furthermore, intracerebroventricular infusion of rTNF adjacent to the hippocampus induced pain behavior in naïve animals similar to that expressed during a model of neuropathic pain. These data support our premise that enhanced production of hippocampal-TNF is integral in pain sensation. In the present study, TNF gene expression was induced exclusively in the hippocampus, eliciting increased local bioactive TNF levels, and animals were assessed for pain behaviors. Male Sprague-Dawley rats received stereotaxic injection of gold nanorod (GNR)-complexed cDNA (control or TNF) plasmids (nanoplasmidexes), and pain responses (i.e., thermal hyperalgesia and mechanical allodynia) were measured. Animals receiving hippocampal microinjection of TNF nanoplasmidexes developed thermal hyperalgesia bilaterally. Sensitivity to mechanical stimulation also developed bilaterally in the rat hind paws. In support of these behavioral findings, immunoreactive staining for TNF, bioactive levels of TNF, and levels of TNF mRNA per polymerase chain reaction analysis were assessed in several brain regions and found to be increased only in the hippocampus. These findings indicate that the specific elevation of TNF in the hippocampus is not a consequence of pain, but in fact induces these behaviors/symptoms.
Brain, Behavior, and Immunity, 2011
It has been shown that following peripheral nerve injury brain-derived neurotrophic factor (BDNF) released by activated microglia contributes to neuropathic pain, but whether BDNF affects the function of microglia is still unknown. In the present work we found that spinal application of BDNF, which induced long-term potentiation (LTP) of C-fiber evoked field potentials, activated spinal microglia in naïve animals, while pretreatment with microglia inhibitor minocycline blocked BDNF-induced LTP. In addition, following LTP induction by BDNF, both phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were up-regulated only in spinal microglia but not in neurons and astrocytes, whilst spinal application of SFKs inhibitor (PP2 or SU6656) or p38 MAPK inhibitor (SB203580) blocked BDNF-induced LTP and suppressed microglial activation. As spinal LTP at C-fiber synapses is considered to underlie neuropathic pain, we subsequently examined whether BDNF may contribute to mechanical hypersensitivity by activation of spinal microglia using spared nerve injury (SNI) model. Following SNI BDNF and TrkB receptor were up-regulated mainly in dorsal horn neurons and in activated microglia, and p-SFKs and p-p38 MAPK were increased exclusively in microglia. Intrathecal injection of BDNF scavenger TrkB-Fc starting before SNI, which prevented the behavioral sign of neuropathic pain, suppressed both microglial activation and the up-regulation of p-SFKs and p-p38 MAPK produced by SNI. Thus, the increased BDNF/TrkB signaling in spinal dorsal horn may contribute to neuropathic pain by activation of microglia following peripheral nerve injury and inhibition of SFKs or p38 MAPK may selectively inhibit microglia in spinal dorsal horn.
Brain, Behavior, & Immunity - Health, 2020
Lesions of peripheral nerves lead to pain, hyperalgesia, and psychological comorbidities. However, the relationship between mood disorders and neuropathic pain is unclear, as well as the underlying mechanisms related to these disorders. Therefore, we investigated if nerve injury induces depression, anxiety, and cognitive impairment and if there were changes in cytokines, growth factors, and glial cell activation in cortical sites involved in processing pain and mood in animals with nerve injury. Nerve injury was induced by partial sciatic nerve ligation (PSNL) in male Swiss mice and compared to sham-operated animals. Nociceptive behavioral tests to mechanical and thermal (heat and cold) stimuli confirmed the development of hyperalgesia. We further examined mood disorders and memory behaviors. We show nerve injury induces a decrease in mechanical withdrawal thresholds and thermal latency to heat and cold. We also show that nerve injury causes depressive-like and anxiety-like behaviors as well as impairment in short-term memory in mice. There were increases in proinflammatory cytokines as well as Brain-Derived Neurotrophic Factor (BDNF) in the injured nerve. In the spinal cord, there were increases in both pro and anti-inflammatory cytokines, as well as of BDNF and Nerve Growth Factor (NGF). Further, in our data was a decrease in the density of microglia and astrocytes in the hippocampus and increased microglial density in the prefrontal cortex, areas associated with neuropathic pain conditions.
European Journal of Pharmacology, 2009
The pharmacological attenuation of glial activation represents a novel approach for controlling neuropathic pain, but the role of microglial and astroglial cells is not well established. To better understand the potential role of two types of glial cells, microglia and astrocytes, in the pathogenesis of neuropathic pain, we examined markers associated with them by quantitative RT-PCR, western blot and immunohistochemical analyses in the dorsal horn of the lumbar spinal cord 7 days after chronic constriction injury (CCI) to the sciatic nerve in mice. The mRNA and protein of microglial cells were labeled with C1q and OX42(CD11b/c), respectively. The mRNA and protein of astrocytes were labeled with GFAP. The RT-PCR results indicated an increase in C1q mRNA that was more pronounced than the increased expression of GFAP mRNA ipsilateral to the injury in the dorsal spinal cord. Similarly, western blot and immunohistochemical analyses demonstrated an ipsilateral upregulation of OX42-positive cells (72 and 20%, respectively) and no or little (8% upregulation) change in GFAP-positive cells in the ipsilateral dorsal lumbar spinal cord. We also found that chronic intraperitoneal injection of the minocycline (microglial inhibitor) and pentoxifylline (cytokine inhibitor) attenuated CCI-induced activation of microglia, and both, but not fluorocitrate (astroglial inhibitor), diminished neuropathic pain symptoms and tactile and cold sensitivity. Our findings indicate that spinal microglia are more activated than astrocytes in peripheral injury-induced neuropathic pain. These findings implicate a glial regulation of the pain response and suggest that pharmacologically targeting microglia could effectively prevent clinical pain syndromes in programmed and/or anticipated injury.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011
IL-1β and TNF are potential targets in the management of neuropathic pain after injury. However, the importance of the IL-1 and TNF systems for peripheral nerve regeneration and the mechanisms by which these cytokines mediate effects are to be fully elucidated. Here, we demonstrate that mRNA and protein levels of IL-1β and TNF are rapidly upregulated in the injured mouse sciatic nerve. Mice lacking both IL-1β and TNF, or both IL-1 type 1 receptor (IL-1R1) and TNF type 1 receptor (TNFR1), showed reduced nociceptive sensitivity (mechanical allodynia) compared with wild-type littermates after injury. Microinjecting recombinant IL-1β or TNF at the site of sciatic nerve injury in IL-1β- and TNF-knock-out mice restored mechanical pain thresholds back to levels observed in injured wild-type mice. Importantly, recovery of sciatic nerve function was impaired in IL-1β-, TNF-, and IL-1β/TNF-knock-out mice. Notably, the infiltration of neutrophils was almost completely prevented in the sciatic ...
Neuropharmacology, 2007
Compelling evidence has shown that in hippocampus tumor necrosis factor a (TNF-a) at pathological concentration inhibits long-term potentiation (LTP), a synaptic model of learning and memory. In the present work we investigated the role of TNF-a in LTP of C-fiber evoked field potentials in spinal dorsal horn, which is relevant to pathological pain. We showed that spinal application of TNF-a affected neither basal synaptic transmission mediated by C-fibers nor spinal LTP of C-fiber evoked field potentials induced by tetanic stimulation in intact rats. However, in rats with neuropathic pain, produced by either lumbar 5 ventral root transection (L5 VRT) or spared nerve injury (SNI), spinal application of TNF-a induced LTP of C-fiber evoked field potentials. Spinal application of JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) did not affect the spinal LTP induced by tetanic stimulation in intact rats, but completely blocked LTP induced by TNF-a in L5 VRT rats. NF-kappa B (NF-kB) inhibitor (PDTC) also blocked LTP induced by TNF-a. These results suggest that TNF-a and its downstream molecules may have no acute effect on spinal synaptic transmission in intact animals and induce LTP in rats with neuropathic pain produced by nerve injury.
Journal of Neuroscience, 2011
Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 (transient receptor potential subtype V1) and TNF-␣, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knockout mice. TNF-␣ also increases sEPSC frequency but not amplitude in spinal outer lamina II (lamina IIo) neurons, and this increase is abolished in Trpv1 knockout mice. Single-cell PCR analysis revealed that TNF-␣-responding neurons in lamina IIo are exclusively excitatory (vGluT2 ϩ) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from-3 polyunsaturated fatty acid (docosahexaenoic acid), blocks TNF-␣-and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC 50 ϭ 0.4 nM) in dissociated dorsal root ganglion neurons, and this IC 50 is Ϸ500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had no effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1-10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-␣-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/ TNF-␣-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain.