Unraveling the Complexity of the Rhomboid Serine Protease 4 Family of Babesia bovis Using Bioinformatics and Experimental Studies (original) (raw)
Related papers
PloS one
Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the causative agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) where their orthologues in Plasmodium parasite have been shown to encode for proteins required for the development of sexual stages. The current study identified four additional 6-Cys genes (G, H, I, J) in the B. bovis genome. These four genes are described in the context of the complete ten 6-Cys gene superfamily. The proteins expressed by this gene family are predicted to be secreted or surface membrane directed. Genetic analysis comparing the 6-Cys superfamily among five distinct B. bovis strains shows limited sequence variation. Additionally, A, B, E, H, I and J genes were transcribed in B. bovis infected tick midgut while genes A, B and E were also transcribed in the subsequent ...
International Journal for Parasitology, 2012
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. In particular, Babesia bovis and Babesia bigemina are transmitted by cattle ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus, which are considered the most important cattle ectoparasites with major economic impacts on cattle production. The objectives of this study were to identify R. annulatus genes differentially expressed in response to infection with B. bigemina. Functional analyses were conducted on selected genes by RNA interference in both R. annulatus and R. microplus ticks. Eight hundred randomly selected suppression-subtractive hybridisation library clones were sequenced and analysed. Molecular function Gene Ontology assignments showed that the obtained tick sequences encoded for proteins with different cellular functions. Differentially expressed genes with putative functions in tick-pathogen interactions were selected for validation of SSH results by real-time reverse transcription-PCR. Genes encoding for TROSPA, calreticulin, ricinusin and serum amyloid A were over-expressed in B. bigemina-infected ticks while Kunitz-type protease inhibitor 5 mRNA levels were down-regulated in infected ticks. Functional analysis of differentially expressed genes by double stranded RNA-mediated RNAi showed that under the conditions of the present study knockdown of TROSPA and serum amyloid A significantly reduced B. bigemina infection levels in R. annulatus while in R. microplus, knockdown of TROSPA, serum amyloid A and calreticulin also reduced pathogen infection levels when compared with controls. Several studies have characterised the tick-pathogen interface at the molecular level. However, to our knowledge this is the first report of functional genomics studies in R. annulatus infected with B. bigemina. The results reported here increase our understanding of the role of tick genes in Babesia infection/multiplication.
Transcriptome dataset of Babesia bovis life stages within vertebrate and invertebrate hosts
Data in Brief, 2020
Babesia bovis is a hemoprotozoan parasite of cattle that has a complex life cycle within vertebrate and invertebrate hosts. In the mammalian host, B. bovis undergoes asexual reproduction while in the tick midgut, gametes are induced, fuse, and form zygotes. The zygote infects tick gut epithelial cells and transform into kinetes that are released into the hemolymph and invade other tick tissues such as the ovaries, resulting in transovarial transmission to tick offspring. To compare gene regulation between different B. bovis life stages, we collected parasites infecting bovine erythrocytes and tick hemolymph. Total RNA samples were isolated, and multiplexed libraries sequenced using paired-end 100 cycle reads of a HiSeq 2500. The data was normalized using the TMM
Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa
2007
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ;150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development. Citation: Brayton KA, Lau AOT, Herndon DR, Hannick L, Kappmeyer LS, et al. (2007) Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 3(10): e148.
Identification of three CCp genes in Babesia divergens: Novel markers for sexual stages parasites
Molecular and Biochemical Parasitology, 2010
Babesia divergens, a tick-borne protozoan parasite of red blood cells, is the main agent of bovine and human babesiosis in Europe. Very few data are available concerning its life cycle and sexual reproduction inside the tick vector, Ixodes ricinus. The aim of this study was to define some markers of the B.divergens sexual stage. An in silico post-genomic approach was used to analyze genomic, transcriptomic and proteomic data and to select specific sexual stage proteins of the related apicomplexan genus Plasmodium. Three proteins, based on sequence identity between the available genomes of Plasmodium and Babesia spp., were chosen, as members of a highly conserved and apicomplexan sexual stages specific protein family (CCp) potentially involved in adhesive functions. Degenerate primers were used to amplify and clone three B.divergens orthologs (bdccp1, bdccp2, and bdccp3) corresponding to newly identified genes in this parasite. The opportunities offered by such markers to study parasite development in its vector are discussed.This paper describes the identification of three new sexual stages specific genes of Babesia divergens belonging to the Apicomplexa CCp family: bdccp1, bdccp2 and bdccp3.
A Comparative Genomic Study of Attenuated and Virulent Strains of Babesia bigemina
Pathogens
Cattle babesiosis is a socio-economically important tick-borne disease caused by Apicomplexa protozoa of the genus Babesia that are obligate intraerythrocytic parasites. The pathogenicity of Babesia parasites for cattle is determined by the interaction with the host immune system and the presence of the parasite’s virulence genes. A Babesia bigemina strain that has been maintained under a microaerophilic stationary phase in in vitro culture conditions for several years in the laboratory lost virulence for the bovine host and the capacity for being transmitted by the tick vector. In this study, we compared the virulome of the in vitro culture attenuated Babesia bigemina strain (S) and the virulent tick transmitted parental Mexican B. bigemina strain (M). Preliminary results obtained by using the Basic Local Alignment Search Tool (BLAST) showed that out of 27 virulence genes described and analyzed in the B. bigemina virulent tick transmitted strain, only five were fully identified in ...
Insect Biochemistry and Molecular Biology, 2007
We used gel electrophoresis and mass spectrometry to investigate differences in protein expression in ovarian tissues from Babesia bovis-infected and uninfected southern cattle tick, Rhipicephalus (Boophilus) microplus. Soluble and membrane proteins were extracted from ovaries of adult female ticks, and analyzed by isoelectric focusing (IEF) and one-dimensional or two-dimensional (2-D) gel electrophoresis. Protein patterns were analyzed for differences in expression between infected and uninfected ticks. 2-D separation of proteins revealed a number of proteins that appeared to be up-or down-regulated in response to infection with Babesia, in particular membrane/membrane-associated proteins and proteins in a low molecular mass range between 6 and 36 kDa. A selection of differentially expressed proteins was subjected to analysis by capillary-HPLC-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS). Among the ovarian proteins that were up-regulated in infected ticks were calreticulin, two myosin subunits, an endoplasmic reticulum protein, a peptidyl-prolyl cis-trans isomerase (PPIase), a cytochrome c oxidase subunit, a glutamine synthetase, and a family of Kunitz-type serine protease inhibitors. Among the down-regulated ovarian proteins were another PPIase, a hemoglobin subunit, and a lysozyme. This study is part of an ongoing effort to establish a proteome database that can be utilized to investigate specific proteins involved in successful pathogen transmission.
A Babesia bovis gene syntenic to Theileria parva p67 is expressed in blood and tick stage parasites
2010
Completion of the Babesia bovis (T2Bo strain) genome provides detailed data concerning the predicted proteome of this parasite, and allows for a bioinformatics approach to gene discovery. Comparative genomics of the hemoprotozoan parasites B. bovis and Theileria parva revealed a highly conserved syntenic block of genes flanking the p67 gene of T. parva, a sporozoite stage-specific vaccine candidate against East Coast fever (ECF). The syntenic gene in B. bovis, designated bov57, encodes a protein of limited amino acid sequence identity (11.8%) to p67. Monoclonal antibodies were produced against recombinant BOV57 and were used to demonstrate expression of BOV57 in merozoite and kinete stages of the T2Bo strain of B. bovis. Transcript levels of bov57 in kinetes were increased 100-fold in comparison to msa-1, a previously identified gene encoding an erythrocyte stage surface protein.
PLoS neglected tropical diseases, 2017
Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growt...
Parasites & Vectors, 2010
Background Cysteine proteases have been shown to be highly relevant for Apicomplexan parasites. In the case of Babesia bovis, a tick-transmitted hemoparasite of cattle, inhibitors of these enzymes were shown to hamper intraerythrocytic replication of the parasite, underscoring their importance for survival. Results Four papain-like cysteine proteases were found to be encoded by the B. bovis genome using the MEROPS database. One of them, the ortholog of Plasmodium falciparum falcipain-2, here named bovipain-2, was further characterized. Bovipain-2 is encoded in B. bovis chromosome 4 by an ORF of 1.3 kb, has a predicted molecular weight of 42 kDa, and is hydrophilic with the exception of a transmembrane region. It has orthologs in several other apicomplexans, and its predicted amino acid sequence shows a high degree of conservation among several B. bovis isolates from North and South America. Synteny studies demonstrated that the bovipain-2 gene has expanded in the genomes of two rela...