Incremental Clustering and Expansion for Faster Optimal Planning in Decentralized POMDPs (original) (raw)

Incremental clustering and expansion for faster optimal planning in Dec-POMDPs

This article presents the state-of-the-art in optimal solution methods for decentralized partially observable Markov decision processes (Dec-POMDPs), which are general models for collaborative multiagent planning under uncertainty. Building off the generalized multiagent A* ( GMAA*) algorithm, which reduces the problem to a tree of one-shot collaborative Bayesian games (CBGs), we describe several advances that greatly expand the range of Dec-POMDPs that can be solved optimally. First, we introduce lossless incremental clustering of the CBGs solved by GMAA*, which achieves exponential speedups without sacrificing optimality. Second, we introduce incremental expansion of nodes in the GMAA* search tree, which avoids the need to expand all children, the number of which is in the worst case doubly exponential in the node's depth. This is particularly beneficial when little clustering is possible. In addition, we introduce new hybrid heuristic representations that are more compact and thereby enable the solution of larger Dec-POMDPs. We provide theoretical guarantees that, when a suitable heuristic is used, both incremental clustering and incremental expansion yield algorithms that are both complete and search equivalent. Finally, we present extensive empirical results demonstrating that GMAA*-ICE, an algorithm that synthesizes these advances, can optimally solve Dec-POMDPs of unprecedented size.

MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs

2005

We present multi-agent A* (MAA*), the first complete and optimal heuristic search algorithm for solving decentralized partiallyobservable Markov decision problems (DEC-POMDPs) with finite horizon. The algorithm is suitable for computing optimal plans for a cooperative group of agents that operate in a stochastic environment such as multirobot coordination, network traffic control, or distributed resource allocation. Solving such problems effectively is a major challenge in the area of planning under uncertainty. Our solution is based on a synthesis of classical heuristic search and decentralized control theory. Experimental results show that MAA* has significant advantages. We introduce an anytime variant of MAA* and conclude with a discussion of promising extensions such as an approach to solving infinite horizon problems.

Planning with Macro-Actions in Decentralized POMDPs

INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS

Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for decentralized decision making under uncertainty. However, they typically model a problem at a low level of granularity, where each agent's actions are primitive operations lasting exactly one time step. We address the case where each agent has macro-actions: temporally extended actions which may require different amounts of time to execute. We model macro-actions as \emph{options} in a factored Dec-POMDP model, focusing on options which depend only on information available to an individual agent while executing. This enables us to model systems where coordination decisions only occur at the level of deciding which macro-actions to execute, and the macro-actions themselves can then be executed to completion. The core technical difficulty when using options in a Dec-POMDP is that the options chosen by the agents no longer terminate at the same time. We present extensions of two leading Dec-POMDP algorithms for generating a policy with options and discuss the resulting form of optimality. Our results show that these algorithms retain agent coordination while allowing near-optimal solutions to be generated for significantly longer horizons and larger state-spaces than previous Dec-POMDP methods.

Anytime planning for decentralized POMDPs using expectation maximization

2012

Decentralized POMDPs provide an expressive framework for multi-agent sequential decision making. While finite-horizon DEC-POMDPs have enjoyed significant success, progress remains slow for the infinite-horizon case mainly due to the inherent complexity of optimizing stochastic controllers representing agent policies. We present a promising new class of algorithms for the infinite-horizon case, which recasts the optimization problem as inference in a mixture of DBNs. An attractive feature of this approach is the straightforward adoption of existing inference techniques in DBNs for solving DEC-POMDPs and supporting richer representations such as factored or continuous states and actions. We also derive the Expectation Maximization (EM) algorithm to optimize the joint policy represented as DBNs. Experiments on benchmark domains show that EM compares favorably against the state-of-the-art solvers.

Lossless Clustering of Histories In Decentralized POMDPs

Proceedings of The 8th …, 2009

Decentralized partially observable Markov decision processes (Dec-POMDPs) constitute a generic and expressive framework for multiagent planning under uncertainty. However, planning optimally is difficult because solutions map local observation histories to actions, and the number of such histories grows exponentially in the planning horizon. In this work, we identify a criterion that allows for lossless clustering of observation histories: i.e., we prove that when two histories satisfy the criterion, they have the same optimal value and thus can be treated as one. We show how this result can be exploited in optimal policy search and demonstrate empirically that it can provide a speed-up of multiple orders of magnitude, allowing the optimal solution of significantly larger problems. We also perform an empirical analysis of the generality of our clustering method, which suggests that it may also be useful in other (approximate) Dec-POMDP solution methods.

Heuristic Policy Iteration for Infinite-Horizon Decentralized POMDPs

2008

Decentralized POMDPs (DEC-POMDPs) offer a rich model for planning under uncertainty in multiagent settings. Improving the scalability of solution techniques is an important challenge. While an optimal algorithm has been developed for infinitehorizon DEC-POMDPs, it often requires an intractable amount of time and memory. To address this problem, we present a heuristic version of this algorithm. Our approach is able to use initial state information to decrease solution size and often increases solution quality over what is achievable by the optimal algorithm before resources are exhausted. Experimental results demonstrate that this heuristic approach is effective, producing higher values and more concise solutions in all three test domains.

Scaling Up Decentralized MDPs Through Heuristic Search

Decentralized partially observable Markov decision processes (Dec-POMDPs) are rich models for cooperative decision-making under uncertainty, but are often intractable to solve optimally (NEXP-complete). The transition and observation independent Dec-MDP is a general subclass that has been shown to have complexity in NP, but optimal algorithms for this subclass are still inefficient in practice. In this paper, we first provide an updated proof that an optimal policy does not depend on the histories of the agents, but only the local observations. We then present a new algorithm based on heuristic search that is able to expand search nodes by using constraint optimization. We show experimental results comparing our approach with the state-of-the-art Dec-MDP and Dec-POMDP solvers. These results show a reduction in computation time and an increase in scalability by multiple orders of magnitude in a number of benchmarks.

Modeling and Planning with Macro-Actions in Decentralized POMDPs

Journal of Artificial Intelligence Research, 2019

Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for decentralized multi-agent decision making under uncertainty. However, they typically model a problem at a low level of granularity, where each agent's actions are primitive operations lasting exactly one time step. We address the case where each agent has macro-actions: temporally extended actions that may require different amounts of time to execute. We model macro-actions as options in a Dec-POMDP, focusing on actions that depend only on information directly available to the agent during execution. Therefore, we model systems where coordination decisions only occur at the level of deciding which macro-actions to execute. The core technical difficulty in this setting is that the options chosen by each agent no longer terminate at the same time. We extend three leading Dec-POMDP algorithms for policy generation to the macro-action case, and demonstrate their effectiveness in both sta...

A heuristic approach for solving decentralized-POMDP

Proceedings of the 2002 ACM symposium on Applied computing - SAC '02, 2002

Defining the behaviour of a set of situated agents, such that a collaborative problem can be solved is a key issue in multi-agent systems. In this paper, we formulate this problem from the decision theoretic perspective using the framework of Decentralized Partially Observable Markov ...

Optimally solving Dec-POMDPs as Continuous-State MDPs: Theory and Algorithms

HAL (Le Centre pour la Communication Scientifique Directe), 2014

Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general model for decision-making under uncertainty in cooperative decentralized settings, but are difficult to solve optimally (NEXP-Complete). As a new way of solving these problems, we introduce the idea of transforming a Dec-POMDP into a continuous-state deterministic MDP with a piecewise-linear and convex value function. This approach makes use of the fact that planning can be accomplished in a centralized offline manner, while execution can still be distributed. This new Dec-POMDP formulation, which we call an occupancy MDP, allows powerful POMDP and continuous-state MDP methods to be used for the first time. When the curse of dimensionality becomes too prohibitive, we refine this basic approach and present ways to combine heuristic search and compact representations that exploit the structure present in multiagent domains, without losing the ability to eventually converge to an optimal solution. In particular, we introduce feature-based heuristic search that relies on feature-based compact representations, point-based updates and efficient action selection. A theoretical analysis demonstrates that our feature-based heuristic search algorithms terminate in finite time with an optimal solution. We include an extensive empirical analysis using well known benchmarks, thereby demonstrating our approach provides significant scalability improvements compared to the state of the art.