CHARACTERIZATION OF THE OTTOMAN CERAMIC TILES IN THE FAÇADE OF MUSTAFA SINAN'S SAPIL (CAIRO, EGYPT (original) (raw)

Abstract

The Sapil (public fountain) and Kuttab (school) of Mustafa Sinan are important monuments dating back to the Ottoman Era (1630 AD). The main façade of the Sapil in the southeastern side on the Soq al-Silah Street has a set of ceramic tiles with floral decorations, but heavily deteriorated from environmental factors. In fact, the tiles suffered severe deterioration, causing some deterioration phenomena, such as crazing and large, macro cracks, peeling of the glaze layer, broken ceramic tiles and accumulated dust and soot on the surface, resulting in the deformation and obliteration of the decorations. The present research paper is a characterization study (chemical composition and mineralogical structure of the body and the glaze layer) to determine their deterioration aspects. USB digital microscope, X-Ray Diffraction, and SEM-EDX were used to study ten various samples. The results of tiles analysis showed the use of local clay mixed with a small amount of lime. The firing temperature of these tiles was around 900-1000 ºC according to the presence of diopside. The mortar of the installation of the ceramic tiles was composed of a mixture of gypsum, lime, and sand. It was determined that the alkaline and lead oxides were the main components of the glaze layer, with rising lead oxide in all samples. It was also seen that the white glaze color was obtained with calcium, whereas the cobalt oxide was used for dark blue. At the same time, the copper oxide was used for light blue and green color. Iron oxide with manganese was used to get the coral red glaze. This helped to choose compatible materials for their future restoration.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (52)

  1. Abd algwad, R., (2015) Study of techniques, factors and aspects of deterioration of glazing layer on ceramic tiles in some Ottoman buildings at Rashid City, and methods of treatment and conservation, MSc thesis, Faculty of Archaeology, Cairo University, Egypt. (In Arabic).
  2. Abd-Allah, R., Al-Muheisen, Z., Al-Howadi, S., (2010) Cleaning strategies of pottery objects excavated from Khirbet Edh-Dharih and Hayyan Al-Mushref, Jordan: Four case studies, Mediterranean Archaeology and Archaeometry 10, 97-110.
  3. Abd-Elrahim, E., and Weshahy, I., (2017) The mortar damage and its harmful effects on the glazed ceramic tiles in Terbana mosque -Alexandria, Egypt, SHEDET 4,155-166. Doi: 10.36816/shedet.004.10
  4. Al-hussieny, M. H., (1988) Ottoman sapils in Cairo 1517-1798AH., Cairo, Egypt, Publisher: Madbouly Bookstore (In Arabic), ISBN 2-094-133-977.
  5. Ali, M., Omar, Sh., (2021) Analytical investigation of deterioration aspects in the mihrab of Madrasa Gawhariyya of Al-azhar mosque, Egypt, Egyptian Journal of Archaeological and Restoration Studies (EJARS) 11, 9-17. doi:10.21608/EJARS.2021.179491
  6. Arantegui, J., Larrea, A., Molera, J., Pradell, T., and Vendrell-Saz, M., (2004) Some aspects of characterization of decorations on ceramic glazes, Applied Physics A 79(2), 235-239. DOI:10.1007/s00339-004-2508-2
  7. Belfiore, C. M., Mazzoleni, P., Manenti, A. M., Mastelloni, M.A., Corsale, V., Barone, G., (2021) Non-destructive XRF analysis of Aegyptiaca from Sicilian archaeological sites, Mediterranean Archaeology and Archae- ometry, Vol. 21, No 1, 37-69: Doi: 10.5281/zenodo.4284407.
  8. Britt, J., (2007) The complete guide to high-fire glazes, Sterling Publishing Company, Inc, New York.
  9. Burleson, M., (2003) The ceramic glaze handbook: Materials, techniques, formulas, Lark Book Publication, New York.
  10. Buys, S., Oakely, V., (1999) Conservation and restoration of ceramics, Butterworth -Heinemann, ltd., Oxford.
  11. Casasola, R., Ma Rincón.J., Romero, M., (2012) Glass-ceramic glazes for ceramic tiles -a review, Journal of Material Science 47(2), 553-582. DOI:10.1007/s10853-011-5981-y
  12. Çiçek, A., Aslan, A., Kenan, Y., and Ali, S.K., (2009) Effects of environmental conditions on historical buildings: lichens and NOx gases, Environmental Monitoring and Assessment 154, 187-195. DOI: 10.1007/s10661- 008-0388-1.
  13. Coppola, M., Benedetto, F., Garzonio, C., Pecchioni, E., Santo, AP., (2020) Groundwater damages on the his- toric buildings of Cairo: The case of the medieval walls of Mokattam limestone, Materials Science and Engineering 949, 1-9. DOI: 10.1088/1757-899X/949/1/012004.
  14. Costa, J. P, Antunes, F. J.L., Figueiredo, M.O., Fortes, M. A. 1996. Removal and analysis of soluble salts from ancient tiles, Studies in Conservation 41:153-160. DOI:10.1179/sic.1996.41.3.153.
  15. Costa, M., Cachim, P., Coroado, J., Rocha, F., Velosa, A.L., (2014) Ancient wall tiles -The importance of the glaze/ceramic interface in glaze detachment, Materials Science 20, 108-113. DOI: /10.5755/j01.ms.20.1.3815.
  16. Dabanlı, Ö. Yıldız, D., Bayazit, M., (2021) Composition and phase analysis on glazed tiles of southeast Anato- lia: production process identification, Mediterranean Archaeology and Archaeometry, Vol. 21, No 3, 1- 22. DOI: 10.5281/zenodo.5545709 Doi: 10.5281/zenodo.3541108.
  17. Elyamani, A., Bader, N., Algohary, M. and Hassan, R., (2021) Explanation of the Damage to the Royal Family's Cemetery in Historic Cairo and Examination of the Building Materials. Open Journal of Civil Engineer- ing 11, 28-59. DOI: 10.4236/ojce.2021.111003.
  18. Fernández, M. M., Visiedo, J. P., Garrigós, J.B., (2021) Exploring the technique of glazing used by the potters of Barcelona, Mediterranean Archaeology and Archaeometry, Vol. 21, No 3, 69-88. DOI: 10.5281/ze- nodo.5598243. SCIENTIFIC CULTURE, Vol. 8, No 2, (2022), pp. 1-15
  19. Francesco, A.M. De., Miriello, D., Forciniti D., Guido, A., (2021) Physicochemical analysis of original and re- stored carbonate material of the Romanic church bell tower in LONGOBUCCO (CALABRIA, IT- ALY), Mediterranean Archaeology and Archaeometry, Vol. 21, No 1, 121-132: DOI: 10.5281/ze- nodo.4394060.
  20. Gelzo, M. Corso, G., Vergara, Al., Rossi, M., (2021) Archaeometric studies on a blue glass fragment from Pom- peii: case study, Mediterranean Archaeology and Archaeometry, Vol. 21, No 3, 23-34. DOI: 10.5281/ze- nodo.5545711.
  21. Gerard, D., Porter, Y., (2002) The art of the Islamic tile, Flommarion Publication, Paris.
  22. Granneman, S.J.C., Lubelli, B., Van Hees, R.P.J., (2018) Characterization of lime mortar additivated with crys- tallization modifiers, International Journal of Architectural Heritage 12(5), 849-858. DOI: 10.1080/15583058.2017.1422570.
  23. Grossi, C. M., Brimblecombe, P., (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings, in: Přikryl, P. & Smith, B. J. (Eds.), Building stone decay: from diagnosis to conservation, Geological Society, London, Special Publications 271, 117-130. DOI: 10.1144/GSL.SP.2007.271.01.13.
  24. Gulzar, S., (2017) Deterioration morphologies of historic ornamental panels from the Mughal Historic Monu- ments of Lahore (Pakistan), International Journal of Advances in Mechanical and Civil Engineering 4, 14- 17.
  25. Junior, G.S., Ferreira, J., Millán-Arias, C., Daniel, R., Junior, A.C., and Fernandes, B.J.T., (2021) Ceramic cracks segmentation with deep learning, Applied Sciences, 11, 6017, 1-13. DOI: 10.3390/app11136017.
  26. Kamel, A. M.A., (2019) Dehydration of gypsum component of plasters and stuccos in some Egyptian archae- ological buildings and evaluation of K2So4 activator as a consolidant, SCIENTIFIC CULTURE, Vol. 5, No. 2, 49-59. DOI:10.5281/zenodo.2649508.
  27. Kaplan, Z., Ipekoglu, B., Boke, H., (2017) Physicochemical properties of glass tesserae in roman terrace house from ancient Antadros (Base glass, opacifiers and colorants), Mediterranean Archaeology and Archae- ometry, Vol. 17, No 1, 141-157. DOI: 10.5281/zenodo.258103.
  28. Krueger, M., Brandherm, D., Krueger, M., Niedzielski, P., (2021) Archaeometric analysis of late bronze age and early iron age pottery from SETEFILLA (SW SPAIN), Mediterranean Archaeology and Archaeome- try, Vol. 21, No 1, 21-36. DOI: 10.5281/zenodo.4284405.
  29. Liritzis, I., Laskaris, N., Vafiadou, A., Karapanagiotis, I., Volonakis, P., Papageorgopoulou, C., Bratitsi, M. (2020) Archaeometry: an overview, Scientific Culture, Vol. 6, No. 1, 49-98. DOI: 10.5281/ze- nodo.3625220.
  30. Mahmoud, M. M., (2019) Water fountains in the islamic architecture: simplicity of techniques & fascinating performance, International journal of architectural engineering and urban research 2 (2), 34-39.
  31. Mățău, F., Chișcan, O., Pintilei, M., Garvăn, D., Stancu, Al., (2019) Technological features of the chalcolithic pottery from Târpești (neamț county, eastern Romania), Mediterranean Archaeology and Archaeometry, Vol. 19, No 3, 93-104. DOI: 10.5281/zenodo.3541108.
  32. Mimoso, J., Silva, A., Abreu, M., Costa, D., Goncalves, T., Coentro, S., (2009) Decay of historic Azulejos in Portugal: An assessment of research needs, International Seminar "Conservation of Glazed Ceramic Tiles. Research and practice", National Laboratory for Civil Engineering, Lisbon, April 15-16, 2009, 1- 11.
  33. Moussa,A. Ali,M.F., (2013) Color Alteration of Ancient Egyptian Blue Faience, International Journal of Architec- tural Heritage 7, 261-274. DOI: 10.1080/15583058.2011.634960.
  34. Muşkara, Ü., Kalaycı, K., (2021) The feasibility of PXRF for discriminating attic black-figure painters using pigment analysis, Mediterranean Archaeology and Archaeometry, Vol. 21, No 1, 237-255. DOI: 10.5281/zenodo.4574639.
  35. Pérez-Arantegui, J., Montull, B., Resano, M., Ortega, J.M., (2009) Materials and technological evolution of an- cient cobalt-blue-decorated ceramics: Pigments and work patterns in tin-glazed objects from Aragon (Spain) from the 15 th to the 18 th century AD, Journal of the European Ceramic Society 29, 2499-2509. DOI:10.1016/J.JEURCERAMSOC.2009.03.004.
  36. Pradel, T., Molera. J., Salvadó, N., Labrador, A., (2010) Synchrotron Radiation Micro-XRD in the Study of Glaze Technology, Applied Physics A 99(2), 407-417. DOI: 10.1007/s00339-010-5639-7.
  37. Pradell,T., Molera, J., (2020), Ceramic technology. How to characterize ceramic glazes, Archaeological and An- thropological Sciences 12: 189, 1-28. DOI: 10.1007/s12520-020-01136-9.
  38. Rhodes, D., (1996) Clay and glazes for the potters, London.
  39. SCIENTIFIC CULTURE, Vol. 8, No 2, (2022), pp. 1-15
  40. Rice, P.M., (1987) Pottery analysis, University of Chicago Press, USA.
  41. Riederer, J., (2004) Thin section microscopy applied to the study of archaeological ceramics, HyperFine Interac- tions 154, 143-158. DOI: 10.1023/B:HYPE.0000032029.24557.b1.
  42. Sadek, H., (2005) Study of technology, treatment and conservation of archaeological Islamic ceramic lamps with appli- cation on some selected objects, MSc thesis, Faculty of Archaeology, Cairo University, Egypt. (In Ara- bic).
  43. Sadek, H., (2016) Multi-analytical approach for the study of glazed pottery from Al-Fustat, Egypt, Mediterra- nean Archaeology and Archaeometry 16(3), 65-71. DOI:10.5281/zenodo.160950.
  44. Sánchez Ramos, S., Bosch Reig, F., Gimeno Adelantado, J. V., Yusá Marco, D. J., Doménech Carbó, A., (2002) Application of XRF, XRD, thermal analysis, and voltammetric techniques to the study of ancient ceramics, Anal Bioanal Chem 373, 893-900. DOI:10.1007/s00216-002-1376-x.
  45. Shepard, A.O., (1985) Ceramics for the archaeologists, Carnegie Institution of Washington Publication 609, Wash- ington.
  46. Silva, T. P., Figueiredo, M. O., Prudêncio, M. I., (2013) Ascertaining the degradation state of ceramic tiles: A preliminary non-destructive step in view of conservation treatments, Applied Clay Science 82, 101- 105. DOI: 10.1016/j.clay.2013.06.013.
  47. Theologitis, A., Kapridaki, C., Kallithrakas-Kontos, N., Maravelaki-Kalaitzaki, P., Fotiou, A., (2021) Mortar and plaster analysis as a directive to the design of compatible restoration materials in frangokastello (Crete), Mediterranean Archaeology and Archaeometry, Vol. 21, No 1, 109-120: Doi: 10.5281/ze- nodo.4284427.
  48. Tite, M.S., Freestone, I., Mason, R., Molera, J., Vendrell-Saz, M., Wood, N., (1998) Review article lead glazes in antiquity, methods of production and reasons for use, Archaeometry 40 (2), 241-260. DOI: 10.1111/j.1475-4754.1998.tb00836.x.
  49. Tite, M.S., Manti, P., Shortland, A.J., (2007) A Technological Study of ancient faience from Egypt, Journal of archaeological science 34, 1568-1583.
  50. Tournié. A., Ricciardi. P., Colomban. Ph., (2008) Glass corrosion mechanism: A multiscale analysis, Solid State Ionics 179, 2142-2154. DOI: 10.1016/j.ssi.2008.07.019.
  51. Trindade, M.J., Dias, M.I., Coroado, J, Rocha, F., (2009) Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal, Applied Clay Science 42(3/4), 345-355. DOI: 10.1016/j.clay.2008.02.008.
  52. Vecstaudža, J., Jakovļevs, D., Bērziņa-Cimdiņa, L., Stikān, V., (2013) XRD and SEM studies of archaeological stove tile ceramics of Turaida Castle, Material Science and Applied Chemistry 29, 40-45. DOI: 10.7250/msac.2013.018.