Enhanced Inhibition of Orthopoxvirus Replication In Vitro by Alkoxyalkyl Esters of Cidofovir and Cyclic Cidofovir (original) (raw)

Synthesis, metabolic stability and antiviral evaluation of various alkoxyalkyl esters of cidofovir and 9-( S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine

Bioorganic & Medicinal Chemistry, 2011

Alkoxyalkyl esters of cidofovir (CDV) are orally active agents which inhibit the replication of a variety of double stranded DNA (dsDNA) viruses including variola, vaccinia, ectromelia, herpes simplex virus, cytomegalovirus, adenovirus and others. One of these compounds, hexadecyloxypropyl-CDV (HDP-CDV, CMX001) is in clinical development for prevention and treatment of poxvirus infection, vaccination complications, and for infections caused by cytomegalovirus, adenovirus, herpesviruses and other dsDNA viruses. This class of lipid analogs is potentially prone to undergo omega oxidation of the alkyl moiety which can lead to a short chain carboxylic acid lacking antiviral activity. To address this issue, we synthesized a series of alkoxyalkyl or alkyl glycerol esters of CDV and (S)-HPMPA having modifications in the structure of the alkyl residue. Antiviral activity was assessed in cells infected with vaccinia, cowpox or ectromelia viruses. Metabolic stability was determined in S9 membrane fractions from rat, guinea pig, monkey and human liver. All compounds had substantial antiviral activity in cells infected with vaccinia, cowpox or ectromelia. Metabolic stability was lowest in monkey liver S9 incubations where rapid disappearance of HDP-CDV and HDP-(S)-HPMPA was noted. Metabolic stability in monkey preparations increased substantially when a ω-1 methyl group (15-methyl-HDP-CDV) or a terminal cyclopropyl residue (14-cyclopropyl-tetradecyloxypropyl-CDV) was present in the alkyl chain. The most stable compound was 1-O-octadecyl-2-O-benzyl-snglycero-3-CDV (ODBG-CDV) which was not metabolized extensively by monkey liver S9. In rat,

Comparison of the Antiviral Activities of Alkoxyalkyl and Alkyl Esters of Cidofovir against Human and Murine Cytomegalovirus Replication In Vitro

Antimicrobial Agents and Chemotherapy, 2005

Alkoxyalkyl esters of cidofovir (CDV) have substantially greater antiviral activity and selectivity than unmodified CDV against herpesviruses and orthopoxviruses in vitro. Enhancement of antiviral activity was also noted when cyclic CDV was esterified with alkoxyalkanols. In vitro antiviral activity of the most active analogs against human cytomegalovirus (HCMV) and orthopoxviruses was increased relative to CDV up to 1,000-or 200-fold, respectively. Alkyl chain length and linker structure are important potential modifiers of antiviral activity and selectivity. In this study, we synthesized a series of alkoxyalkyl esters of CDV or cyclic CDV with alkyl chains from 8 to 24 atoms and having linker moieties of glycerol, propanediol, and ethanediol. We also synthesized alkyl esters of CDV which lack the linker to determine if the alkoxyalkyl linker moiety is required for activity. The new compounds were evaluated in vitro against HCMV and murine CMV (MCMV). CDV or cyclic CDV analogs both with and without linker moieties were highly active against HCMV and MCMV, and their activities were strongly dependent on chain length. The most active compounds had 20 atoms esterified to the phosphonate of CDV. Both alkoxypropyl and alkyl esters of CDV provided enhanced antiviral activities against CMV in vitro. Thus, the oxypropyl linker moiety is not required for enhanced activity. CDV analogs having alkyl ethers linked to glycerol or ethanediol linker groups also demonstrated increased activity against CMV.

In vitro evaluation of the anti-orf virus activity of alkoxyalkyl esters of CDV, cCDV and (S)-HPMPA

Antiviral Research, 2007

Acyclic nucleoside phosphonates (ANPs) and in particular (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC, cidofovir, CDV, Vistide ® ) and its adenine counterpart (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] are highly active against orf virus infections. This parapoxvirus commonly causes infection in sheep, goats, but also humans. Alkoxyalkyl esters of CDV have an increased oral bioavailability and are more active against orthopoxviruses than the parent compounds. In the present study, the potency of several alkoxyalkyl esters of CDV, cyclic cidofovir (cCDV) and (S)-HPMPA was evaluated against different orf virus isolates in two cell types, human embryonic lung (HEL) fibroblast and primary lamb keratinocytes. Each prodrug was at least 10-fold more active than its parent compound in both cell types. Of all the compounds tested, the (S)-HPMPA alkoxyalkyl esters showed the highest activity and selectivity against orf virus. Our results support the development of alkoxyalkyl esters of ANPs as antivirals not only for the treatment of complicated human orf lesions, but also in the therapy and prophylaxis of contagious ecthyma in sheep and goats.

Oral Treatment of Cowpox and Vaccinia Virus Infections in Mice with Ether Lipid Esters of Cidofovir

Antimicrobial Agents and Chemotherapy, 2004

Four newly synthesized ether lipid esters of cidofovir (CDV), hexadecyloxypropyl-CDV (HDP-CDV), octadecyloxyethyl-CDV (ODE-CDV), oleyloxypropyl-CDV (OLP-CDV), and oleyloxyethyl-CDV (OLE-CDV), were found to have enhanced activities against vaccinia virus (VV) and cowpox virus (CV) in vitro compared to those of CDV. The compounds were administered orally and were evaluated for their efficacies against lethal CV or VV infections in mice. HDP-CDV, ODE-CDV, and OLE-CDV were effective at preventing mortality from CV infection when treatments were initiated 24 h after viral inoculation, but only HDP-CDV and ODE-CDV maintained efficacy when treatments were initiated as late as 72 h postinfection. Oral pretreatment with HDP-CDV and ODE-CDV were also effective when they were given 5, 3, or 1 day prior to inoculation with CV, even when each compound was administered as a single dose. Both HDP-CDV and ODE-CDV were also effective against VV infections when they were administered orally 24 or 48 h after infection. In animals treated with HDP-CDV or ODE-CDV, the titers of both CV and VV in the liver, spleen, and kidney were reduced 3 to 7 log 10 . In contrast, virus replication in the lungs was not significantly reduced. These data indicate that HDP-CDV or ODE-CDV given orally is as effective as CDV given parenterally for the treatment of experimental CV and VV infections and suggest that these compounds may be useful for the treatment of orthopoxvirus infections in humans.

Synthesis and antiviral evaluation of alkoxyalkyl-phosphate conjugates of cidofovir and adefovir

Antiviral Research, 2007

Esterification of cidofovir (CDV), an antiviral nucleoside phosphonate, with alkyl or alkoxyalkyl groups increases antiviral activity by enhancing cell uptake and conversion to CDV diphosphate. Hexadecyloxypropyl-CDV (HDP-CDV) has been shown to be 40 to 100 times more active than CDV in vitro in cells infected with herpes group viruses, variola, cowpox, vaccinia or ectromelia viruses. Since the first phosphorylation of CDV may be rate limiting, we synthesized the hexadecyloxypropylphosphate (HDP-P-) and octadecyloxyethyl-phosphate (ODE-P-) conjugates of CDV and phosphonomethoxy-ethyl-adenine (PMEA, adefovir). We tested the CDV analogs in cells infected with human cytomegalovirus, herpes simplex virus, cowpox virus and vaccinia virus; the analogs of PMEA were tested in cells infected with the human immunodeficiency virus, type 1. In general, the alkoxyalkyl-phosphate conjugates of CDV were substantially more active than CDV. HDP-P-CDV and ODE-P-CDV were 4.6 to 40 times more active against HCMV and 7 to 30 times more active against cowpox and vaccinia in vitro. Although the compounds of this type were more cytotoxic than the unmodified bases, their selectivity for virally infected cells was generally greater than the parent nucleotides except that HDP-P-PMEA showed little or no selectivity in HIV-1 infected MT-2 cells. Although the new compounds with an interposed phosphate were generally less active that the corresponding alkoxyalkyl esters of CDV and PMEA, the present approach provides a possible alternative method for enhancing the antiviral activity of drugs of this class.

Synthesis and Antiviral Evaluation of Alkoxyalkyl Esters of ( R)-[2-(Phosphonomethoxy)propyl]-Nucleosides

Antiviral Research, 2010

Esterification of cidofovir (CDV), an antiviral nucleoside phosphonate, with alkyl or alkoxyalkyl groups increases antiviral activity by enhancing cell uptake and conversion to CDV diphosphate. Hexadecyloxypropyl-CDV (HDP-CDV) has been shown to be 40 to 100 times more active than CDV in vitro in cells infected with herpes group viruses, variola, cowpox, vaccinia or ectromelia viruses. Since the first phosphorylation of CDV may be rate limiting, we synthesized the hexadecyloxypropylphosphate (HDP-P-) and octadecyloxyethyl-phosphate (ODE-P-) conjugates of CDV and phosphonomethoxy-ethyl-adenine (PMEA, adefovir). We tested the CDV analogs in cells infected with human cytomegalovirus, herpes simplex virus, cowpox virus and vaccinia virus; the analogs of PMEA were tested in cells infected with the human immunodeficiency virus, type 1. In general, the alkoxyalkyl-phosphate conjugates of CDV were substantially more active than CDV. HDP-P-CDV and ODE-P-CDV were 4.6 to 40 times more active against HCMV and 7 to 30 times more active against cowpox and vaccinia in vitro. Although the compounds of this type were more cytotoxic than the unmodified bases, their selectivity for virally infected cells was generally greater than the parent nucleotides except that HDP-P-PMEA showed little or no selectivity in HIV-1 infected MT-2 cells. Although the new compounds with an interposed phosphate were generally less active that the corresponding alkoxyalkyl esters of CDV and PMEA, the present approach provides a possible alternative method for enhancing the antiviral activity of drugs of this class.

New prodrugs of Adefovir and Cidofovir

Bioorganic & Medicinal Chemistry, 2011

New Adefovir (PMEA) prodrugs with a pro-moiety consisting of decyl or decyloxyethyl chain bearing hydroxyl function(s), hexaethyleneglycol or a (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl unit were prepared starting from the tetrabutylammonium salt of the phosphonate drug and an appropriate alkyl bromide or tosylate. Analogously, two esters of Cidofovir [(S)-HPMPC] bearing a hexaethyleneglycol moiety were prepared. The activity of the prodrugs was evaluated in vitro against different virus families. A loss in the antiviral activities of the hydroxylated decyl or decyloxyethyl esters and hexaethyleneglycol esters of PMEA against human immunodeficiency virus (HIV) and herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (CMV)] occurred in comparison with the parent compound. On the other hand, the (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl ester of PMEA showed significant activities against HIV and herpesviruses. (S)-HPMPC prodrugs exhibited anti-cytomegalovirus activities in the same range as the parent drug, whereas the anti-HSV and anti-VZV activities were one-to seven-fold lower than that of Cidofovir. Scheme 6. The preparation of protected hexaethylene glycol monotosylates for the alkylation of 1 and 23. Reagents and conditions: (a) TsCl, Ag 2 O, KI, CH 2 Cl 2 , 0°C; (b) 3,4dihydro-2H-pyran, PPTS, CH 2 Cl 2, 40°C; (c) EtOH, NaH, THF, r.t.; (d) Dowex 50WX8-400 [H + ], MeOH, rt; (e) TsCl, Et 3 N, CH 2 Cl 2 , rt.