The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study (original) (raw)
Related papers
PLoS pathogens, 2018
The cystic fibrosis (CF) lung microbiome has been studied in children and adults; however, little is known about its relationship to early disease progression. To better understand the relationship between the lung microbiome and early respiratory disease, we characterized the lower airways microbiome using bronchoalveolar lavage (BAL) samples obtained from clinically stable CF infants and preschoolers who underwent bronchoscopy and chest computed tomography (CT). Cross-sectional samples suggested a progression of the lower airways microbiome with age, beginning with relatively sterile airways in infancy. By age two, bacterial sequences typically associated with the oral cavity dominated lower airways samples in many CF subjects. The presence of an oral-like lower airways microbiome correlated with a significant increase in bacterial density and inflammation. These early changes occurred in many patients, despite the use of antibiotic prophylaxis in our cohort during the first two y...
PLOS ONE, 2019
Objective Airways of children with cystic fibrosis (CF) harbor complex polymicrobial communities which correlates with pulmonary disease progression and use of antibiotics. Throat swabs are widely used in young CF children as a surrogate to detect potentially pathogenic microorganisms in lower airways. However, the relationship between upper and lower airway microbial communities remains poorly understood. This study aims to determine (1) to what extent oropharyngeal microbiome resembles the lung microbiome in CF children and (2) if lung microbiome composition correlates with airway inflammation.
Directly Sampling the Lung of a Young Child with Cystic Fibrosis Reveals Diverse Microbiota
Annals of the American Thoracic Society, 2014
Rationale: The airways of people with cystic fibrosis (CF) are chronically infected with a variety of bacterial species. Although routine culture methods are usually used to diagnose these infections, culture-independent, DNA-based methods have identified many bacterial species in CF respiratory secretions that are not routinely cultured. Many prior culture-independent studies focused either on microbiota in explanted CF lungs, reflecting end-stage disease, or those in oropharyngeal swabs, which likely sample areas in addition to the lower airways. Therefore, it was unknown whether the lower airways of children with CF, well before end-stage but with symptomatic lung disease, truly contained diverse microbiota. Objectives: To define the microbiota in the diseased lung tissue of a child who underwent lobectomy for severe, localized CF lung disease. Methods: After pathologic examination verified that this child's lung tissue reflected CF lung disease, we used bacterial ribosomal RNA gene pyrosequencing and computational phylogenetic analysis to identify the microbiota in serial sections of the tissue. Measurements and Main Results: This analysis identified diverse, and anatomically heterogeneous, bacterial populations in the lung tissue that contained both culturable and nonculturable species, including abundant Haemophilus, Ralstonia, and Propionibacterium species. Routine clinical cultures identified only Staphylococcus aureus, which represented only a small fraction of the microbiota found by sequencing. Microbiota analysis of an intraoperative oropharyngeal swab identified predominantly Streptococcus species. The oropharyngeal findings therefore represented the lung tissue microbiota poorly, in agreement with findings from earlier studies of oropharyngeal swabs in end-stage disease. Conclusions: These results support the concept that diverse and spatially heterogeneous microbiota, not necessarily dominated by "traditional CF pathogens," are present in the airways of young, symptomatic children with early CF lung disease.
Airway microbiota in patients with paediatric cystic fibrosis: Relationship with clinical status
Enfermedades Infecciosas y Microbiología Clínica, 2019
Introduction: New massive sequencing techniques make it possible to determine the composition of airway microbiota in patients with cystic fibrosis (CF). However, the relationship between the composition of lung microbiome and the clinical status of paediatric patients is still not fully understood. Material and methods: A cross-sectional observational study was conducted on induced sputum samples from children with CF and known mutation in the CFTR gene. The bacterial sequences of the 16SrRNA gene were analyzed and their association with various clinical variables studied. Results: Analysis of the 13 samples obtained showed a core microbiome made up of Staphylococcus spp., Streptococcus spp., Rothia spp., Gemella spp. and Granulicatella spp., with a small number of Pseudomonas spp. The cluster of patients with less biodiversity were found to exhibit a greater number of sequences of Staphylococcus spp., mainly Staphylococcus aureus (p 0.009) and a greater degree of lung damage. Conclusion: An airway microbiome with greater biodiversity may be an indicator of less pronounced disease progression, in which case new therapeutic interventions that prevent reduction in non-pathogenic species of the airway microbiota should be studied.
Airway microbiota across age and disease spectrum in cystic fibrosis
The European respiratory journal, 2017
Our objectives were to characterise the microbiota in cystic fibrosis (CF) bronchoalveolar lavage fluid (BALF), and determine its relationship to inflammation and disease status.BALF from paediatric and adult CF patients and paediatric disease controls undergoing clinically indicated bronchoscopy was analysed for total bacterial load and for microbiota by 16S rDNA sequencing.We examined 191 BALF samples (146 CF and 45 disease controls) from 13 CF centres. In CF patients aged <2 years, nontraditional taxa (e.gStreptococcus, Prevotella and Veillonella) constituted ∼50% of the microbiota, whereas in CF patients aged ≥6 years, traditional CF taxa (e.gPseudomonas, Staphylococcus and Stenotrophomonas) predominated. Sequencing detected a dominant taxon not traditionally associated with CF (e.gStreptococcus or Prevotella) in 20% of CF BALF and identified bacteria in 24% of culture-negative BALF. Microbial diversity and relative abundance of Streptococcus, Prevotella and Veillonella were ...
Concordance between upper and lower airway microbiota in infants with cystic fibrosis
The European respiratory journal, 2017
Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of...
Respiratory and Gut Microbiota of Children with Cystic Fibrosis: A Pilot Study
Annals of Clinical and Medical Microbiology, 2022
Differences in the clinical presentation of cystic fibrosis (CF) may be due to microbiota components and their relationship with the host's immune system. In this pilot study, we aimed to investigate the composition of the respiratory and gut microbiota of a cohort of clinically stable children with CF, homozygous for the p.Phe508del mutation. Oropharyngeal swabs and stool samples were obtained from these children attending the CF referral clinics at the Hospital of Clinics, Federal University Paraná (CHC-UFPR). Oropharyngeal and gut microbiota were assessed by V3-V4 sequencing of the 16S ribosomal RNA, and bioinformatics analyses were performed using a proprietary pipeline. We identified a total of 456 bacterial taxa belonging to 164 genera, of which 65 (39.6 %) were common to both the respiratory and gastrointestinal tracts. Taxa from eight genera dominated more than 75 % of the microbial composition of both the niches. Among these dominant taxa, only Prevotella spp. were common to both the sites. Overall, the respiratory and gut microbiota were homogeneous among all the patients. Longitudinal studies targeting a larger cohort are important for an improved understanding of how the composition of bacterial communities is related to changes in the clinical status of CF.
Longitudinal development of the airway microbiota in infants with cystic fibrosis
Scientific Reports, 2019
The pathogenesis of airway infection in cystic fibrosis (CF) is poorly understood. We performed a longitudinal study coupling clinical information with frequent sampling of the microbiota to identify changes in the airway microbiota in infancy that could underpin deterioration and potentially be targeted therapeutically. Thirty infants with CF diagnosed on newborn screening (NBS) were followed for up to two years. Two hundred and forty one throat swabs were collected as a surrogate for lower airway microbiota (median 35 days between study visits) in the largest longitudinal study of the CF oropharyngeal microbiota. Quantitative PCR and Illumina sequencing of the 16S rRNA bacterial gene were performed. Data analyses were conducted in QIIME and Phyloseq in R. Streptococcus spp. and Haemophilus spp. were the most common genera (55% and 12.5% of reads respectively) and were inversely related. Only beta (between sample) diversity changed with age (Bray Curtis r2 = 0.15, P = 0.03). Staphy...
Airway Microbiota in Bronchoalveolar Lavage Fluid from Clinically Well Infants with Cystic Fibrosis
PloS one, 2016
Upper airway cultures guide the identification and treatment of lung pathogens in infants with cystic fibrosis (CF); however, this may not fully reflect the spectrum of bacteria present in the lower airway. Our objectives were to characterize the airway microbiota using bronchoalveolar lavage fluid (BALF) from asymptomatic CF infants during the first year of life and to investigate the relationship between BALF microbiota, standard culture and clinical characteristics. BALF, nasopharyngeal (NP) culture and infant pulmonary function testing data were collected at 6 months and one year of age during periods of clinical stability from infants diagnosed with CF by newborn screening. BALF was analyzed for total bacterial load by qPCR and for bacterial community composition by 16S ribosomal RNA sequencing. Clinical characteristics and standard BALF and NP culture results were recorded over five years of longitudinal follow-up. 12 BALF samples were collected from 8 infants with CF. Strepto...
Lung microbiota across age and disease stage in cystic fibrosis
Scientific Reports, 2015
Understanding the significance of bacterial species that colonize and persist in cystic fibrosis (CF) airways requires a detailed examination of bacterial community structure across a broad range of age and disease stage. We used 16S ribosomal RNA sequencing to characterize the lung microbiota in 269 CF patients spanning a 60 year age range, including 76 pediatric samples from patients of age 4-17, and a broad cross-section of disease status to identify features of bacterial community structure and their relationship to disease stage and age. The CF lung microbiota shows significant inter-individual variability in community structure, composition and diversity. The core microbiota consists of five genera-Streptococcus, Prevotella, Rothia, Veillonella and Actinomyces. CF-associated pathogens such as Pseudomonas, Burkholderia, Stenotrophomonas and Achromobacter are less prevalent than core genera, but have a strong tendency to dominate the bacterial community when present. Community diversity and lung function are greatest in patients less than 10 years of age and lower in older age groups, plateauing at approximately age 25. Lower community diversity correlates with worse lung function in a multivariate regression model. Infection by Pseudomonas correlates with age-associated trends in community diversity and lung function. Cystic fibrosis (CF) is characterized by recurrent airway infection, inflammation and progressive decline in lung function. Infection with key organisms such as Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) has been associated with the frequent exacerbations of airway dysfunction and progressive functional decline that are the hallmarks of the disease 1-3. Over the last decade, cross-sectional and longitudinal studies of bacterial taxa using culture-independent microbial detection methods such as terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequencing, have identified polymicrobial communities in the airways of CF patients that exceed the complexity captured by traditional culture 4-13. Significant heterogeneity in bacterial community composition has been demonstrated within groups of clinically similar patients 5-7. Although the abundance of individual taxa (such as Gemella spp. and the Streptococcus anginosus group), ecological diversity, and community stability are potentially associated with disease status 8,10,14 , no single static or dynamic metric or bacterial taxon has emerged that consistently explains the heterogeneity of disease within otherwise similar hosts. Culture-based methods have demonstrated the clinical significance of infection with pathogens such as P. aeruginosa. Molecular methods have demonstrated that not only their presence or absence, but also