Chaperone activation by unfolding (original) (raw)
Related papers
Intrinsically Disordered Proteins Display No Preference for Chaperone Binding In Vivo
PLOS Computational Biology, 2008
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein-protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins.
How Evolutionary Pressure Against Protein Aggregation Shaped Chaperone Specificity
Journal of Molecular Biology, 2006
As protein aggregation is potentially lethal, control of protein conformation by molecular chaperones is essential for cellular organisms. This is especially important during protein expression and translocation, since proteins are then unfolded and therefore most susceptible to form nonnative interactions. Using TANGO, a statistical mechanics algorithm to predict protein aggregation, we here analyse the aggregation propensities of 28 complete proteomes. Our results show that between 10% and 20% of the residues in these proteomes are within aggregating protein segments and that this represents a lower limit for the aggregation tendency of globular proteins. Further, we show that not only evolution strongly pressurizes aggregation downwards by minimizing the amount of strongly aggregating sequences but also by selectively capping strongly aggregating hydrophobic protein sequences with arginine, lysine and proline. These residues are strongly favoured at these positions as they function as gatekeepers that are most efficient at opposing aggregation. Finally, we demonstrate that the substrate specificity of different unrelated chaperone families is geared by these gatekeepers. Chaperones face the difficulty of having to combine substrate affinity for a broad range of hydrophobic sequences and selectivity for those hydrophobic sequences that aggregate most strongly. We show that chaperones achieve these requirements by preferentially binding hydrophobic sequences that are capped by positively charged gatekeeper residues. In other words, targeting evolutionarily selected gatekeepers allows chaperones to prioritize substrate recognition according to aggregation propensity.
Protein Folding from the Perspective of Chaperone Action
arXiv: Biomolecules, 2019
Predicting the three-dimensional (3D) functional structures of proteins remains an important computational milestone in molecular biology to be achieved. This feat is hinged on a clear understanding of the mechanism which proteins use to fold into their native structures. Since Levinthal's paradox, there has been a lot of progress in understanding this mechanism. Most of the earlier attempts were caught between assigning either hydrophobic interactions or hydrogen bonding as the dominant folding force. However, a consensus now seems to be emerging about hydrogen bonding being a stronger force. Interestingly, a view from chaperone action may further throw some light on the nature of the folding mechanism. Thus the very mechanisms which prevent protein aggregation and misfolding, could help us have a better understanding of the folding mechanism itself.
Diverse functional manifestations of intrinsic structural disorder in molecular chaperones
IDPs (intrinsically disordered proteins) represent a unique class of proteins which show diverse molecular mechanisms in key biological functions. The aim of the present mini-review is to summarize IDP chaperones that have increasingly been studied in the last few years, by focusing on the role of intrinsic disorder in their molecular mechanism. Disordered regions in both globular and disordered chaperones are often involved directly in chaperone action, either by modulating activity or through direct involvement in substrate identification and binding. They might also be responsible for the subcellular localization of the protein. In outlining the state of the art, we survey known IDP chaperones discussing the following points: (i) globular chaperones that have an experimentally proven functional disordered region(s), (ii) chaperones that are completely disordered along their entire length, and (iii) the possible mechanisms of action of disordered chaperones. Through all of these details, we chart out how far the field has progressed, only to emphasize the long road ahead before the chaperone function can be firmly established as part of the physiological mechanistic arsenal of the emerging group of IDPs.
Interplay between chaperones and protein disorder promotes the evolution of protein networks
PLoS computational biology, 2014
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analy...
The role of structural disorder in the function of RNA and protein chaperones
The FASEB Journal, 2004
Chaperones are highly sophisticated protein machines that assist the folding of RNA molecules or other proteins. Their function is generally thought to require a fine-tuned and highly conserved structure: despite the recent recognition of the widespread occurrence of structural disorder in the proteome, this structural trait has never been generally considered in molecular chaperones. In this review we give evidence for the prevalence of functional regions without a well-defined 3-D structure in RNA and protein chaperones. By considering a variety of individual examples, we suggest that the structurally disordered chaperone regions either function as molecular recognition elements that act as solubilizers or locally loosen the structure of the kinetically trapped folding intermediate via transient binding to facilitate its conformational search. The importance of structural disorder is underlined by a predictor of natural disordered regions, which shows an extremely high proportion of such regions, unparalleled in any other protein class, within RNA chaperones: 54.2% of their residues fall into disordered regions and 40% fall within disordered regions longer than 30 consecutive residues. Structural disorder also prevails in protein chaperones, for which frequency values are 36.7% and 15%, respectively. In keeping with these and other details, a novel "entropy transfer" model is presented to account for the mechanistic role of structural disorder in chaperone function.-Tompa, P., Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB
The Mechanism of HdeA Unfolding and Chaperone Activation
Journal of molecular biology, 2018
HdeA is a periplasmic chaperone that is rapidly activated upon shifting the pH to acidic conditions. This activation is thought to involve monomerization of HdeA. There is evidence that monomerization and partial unfolding allow the chaperone to bind to proteins denatured by low pH, thereby protecting them from aggregation. We analyzed the acid-induced unfolding of HdeA using NMR spectroscopy and fluorescence measurements, and obtained experimental evidence suggesting a complex mechanism in HdeA's acid-induced unfolding pathway, as previously postulated from molecular dynamics simulations. Counterintuitively, dissociation constant measurements show a stabilization of the HdeA dimer upon exposure to mildly acidic conditions. We provide experimental evidence that protonation of Glu37, a glutamate residue embedded in a hydrophobic pocket of HdeA, is important in controlling HdeA stabilization and thus the acid activation of this chaperone. Our data also reveal a sharp transition fr...
Proceedings of The National Academy of Sciences, 2010
Intrinsically disordered proteins (IDPs) lack well-defined structure but are widely represented in eukaryotic proteomes. Although the functions of most IDPs are not understood, some have been shown to have molecular recognition and/or regulatory roles where their disordered nature might be advantageous. Anhydrin is an uncharacterized IDP induced by dehydration in an anhydrobiotic nematode, Aphelenchus avenae. We show here that anhydrin is a moonlighting protein with two novel, independent functions relating to desiccation tolerance. First, it has a chaperone-like activity that can reduce desiccation-induced enzyme aggregation and inactivation in vitro. When expressed in a human cell line, anhydrin localizes to the nucleus and reduces the propensity of a polyalanine expansion protein associated with oculopharyngeal muscular dystrophy to form aggregates. This in vivo activity is distinguished by a loose association of anhydrin with its client protein, consistent with a role as a molecular shield. In addition, anhydrin exhibits a second function as an endonuclease whose substrates include supercoiled, linear, and chromatin linker DNA. This nuclease activity could be involved in either repair of desiccation-induced DNA damage incurred during anhydrobiosis or in apoptotic or necrotic processes, for example, but it is particularly unexpected for anhydrin because IDP functions defined to date anticorrelate with enzyme activity. Enzymes usually require precise three-dimensional positioning of residues at the active site, but our results suggest this need not be the case. Anhydrin therefore extends the range of IDP functional categories to include catalysis and highlights the potential for the discovery of new functions in disordered proteomes.