On the invertibility of length two elementary operators (original) (raw)
Related papers
Reversibility for Quantum Programming Language QML
IEEE Latin America Transactions, 2020
We present an extension of the denotational semantic model of the quantum programming language QML, to which computational reversibility is incorporated. The semantics of QML is defined in a functional setting which consider classical and quantum data, to which we add inverse functions. Additionally we incorporate into the semantics a history track which allows reversibility in QML. From the generation and processing of the history track and the final result of a program, the rules for executing reversibility allow to compute the original input data. This work contributes to the study of reversibility in quantum programming languages and considering that there is not yet a quantum computer in which the language can be implemented, this history and the proposed inverse functions are not trivial and allow us to determine that this language is reversible.
Operadores universales y subespacios invariantes
2019
The Invariant Subspace Problem is one of the most studied problems on Operator Theory in the last decades. In fact, it is still open in the Hilbert space setting. The purpose of this work is to present the most classic results concerning this problem and to study the approach based on universal operators. The text is organized as follows: In the first chapter we introduce the theory Banach algebras, focusing on spectral theory and Gelfand transform, two tools that will be fundamental in the development of the text. In the second chapter we provide a classical view of the invariant subspace problem in Hilbert spaces. We show two of the most important results on the existence of hyperinvariant subspaces: Lomonosov theorem and spectral theorem for normal operators. In the third chapter we study the tools to calculate invariant subspaces lattices for some classical operators, emphasizing on the need to use models to characterize these lattices. In chapter four we introduce the universal...
El Origen de la Contracción de Longitud: La Hipótesis de deformación de Fitzgerald Lorentz
2001
Una de las confusiones generalizadas concernientes a la historia del experimento de Michelson-Morley de 1887 tiene que ver con la explicación inicial de este célebre resultado nulo, debido de manera independiente a FitzGerald y a Lorentz. En ninguno de los dos casos se invocó una hipótesis estricta de contracción longitudinal de la longitud, como comúnmente se supone. Lorentz postuló, particularmente en 1895, cualquiera de una cierta familia de posibles efectos de deformación para los cuerpos rígidos en movimiento, incluyendo alteraciones puramente transversales, así como la expansión y la contracción; FitzGerald bien pudo tener en mente la misma familia. Un análisis cuidadoso del experimento Michelson-Morley (que revela una serie de graves deficiencias en muchos tratamientos de los libros de texto) muestra de hecho que no se requiere una contracción estricta.
INVERSIÓN EN INTANGIBLES Y ESTRATEGIA COMPETITIVA: UNA EXTENSIÓN DEL MODELO DE COURNOT
Inversion en intangibles