Laminopathies: The molecular background of the disease and the prospects for its treatment (original) (raw)
Related papers
Advances in basic and clinical research in laminopathies
Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases, 2013
Lamins (LMNA) are the main proteins of the nuclear lamina considered to be the ancestors of all intermediate filament proteins. They form complex protein assemblies with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. During recent years, interest in lamins has greatly increased due to the identification of many distinct heritable human disorders associated with lamin mutations. These disorders, collectively termed laminopathies, range from muscular dystrophies to premature aging. They may affect muscle, fat, bone, nerve and skin tissues. The workshop was addressed to understand lamin organization and its roles in nuclear processes, mutations in lamins affecting cell and tissues functions, the biology of the nucleus and laminopathic disease mechanisms, all aspects important for designing future therapies.
Emerging perspectives on laminopathies
Cell Health and Cytoskeleton, 2016
Laminopathies are a group of inherited disorders caused by mutations in the lamin A/C gene, and can affect diverse organs or tissues, or can be systemic, causing premature aging. In the present review, we report on the composition and structure of the nuclear lamina and the role of lamins in nuclear mechanics and their involvement in human diseases, and provide some examples of laminopathies and current therapeutic approaches.
Laminopathies and lamin-associated signaling pathways
Journal of Cellular Biochemistry, 2011
Laminopathies are genetic diseases due to mutations or altered post-translational processing of nuclear envelope/lamina proteins. The majority of laminopathies are caused by mutations in the LMNA gene, encoding lamin A/C, but manifest as diverse pathologies including muscular dystrophy, lipodystrophy, neuropathy, and progeroid syndromes. Lamin-binding proteins implicated in laminopathies include lamin B2, nuclear envelope proteins such as emerin, MAN1, LBR, and nesprins, the nuclear matrix protein matrin 3, the lamina-associated polypeptide, LAP2alpha and the transcriptional regulator FHL1. Thus, the altered functionality of a nuclear proteins network appears to be involved in the onset of laminopathic diseases. The functional interplay among different proteins involved in this network implies signaling partners. The signaling effectors may either modify nuclear envelope proteins and their binding properties, or use nuclear envelope/lamina proteins as platforms to regulate signal transduction. In this review, both aspects of lamin-linked signaling are presented and the major pathways so far implicated in laminopathies are summarized.
“Laminopathies”: A wide spectrum of human diseases
Experimental Cell Research, 2007
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called "laminopathies." Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of "laminopathies" have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new "laminopathies" and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.
Laminopathies and A-type lamin-associated signalling pathways
Advances in Enzyme Regulation, 2010
The nuclear envelope (NE) is the most important border in the eukaryotic cells, essential in maintaining the identity of the nuclear and cytoplasmic compartments and in allowing additional levels of regulation and control of the gene expression. Previous studies of our group provided new insights in the complex mechanisms that are involved in the pathogenesis of a group of human diseases, collectively referred to as laminopathies . In particular, we investigated the influences of disease-causing mutations in A-type lamins on the nuclear morphology and chromatin arrangement , on the involvement of prelamin A accumulation in progeric laminopathies , and on the possible effects of altered lamin A forms on the availability of specific transcription factors .
Primary laminopathy fibroblasts display altered genome organization and apoptosis
Aging Cell, 2007
A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.