FMP: Toward Fair Graph Message Passing against Topology Bias (original) (raw)
Related papers
Graph Learning with Localized Neighborhood Fairness
arXiv (Cornell University), 2022
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph. Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
Biased Edge Dropout in NIFTY for Fair Graph Representation Learning
ESANN 2022 proceedings
Graph Neural Networks (GNNs) are nowadays widely used in many real-world applications. Nonetheless, the data relationships can be a source of biases based on sensitive attributes (e.g., gender or ethnicity). Several methods have been proposed to learn fair graph node representations. In this work we extend NIFTY, an approach that exploits additional terms in the loss function based on perturbing the input data to enforce the fairness of the GNNs. In particular, we exploit a biased perturbation of the adjacency matrix of the graph able to reduce the edge homophily. We show the effectiveness of our approach in four real-world graph datasets.
CrossWalk: Fairness-enhanced Node Representation Learning
2021
The potential for machine learning systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. Much recent work has focused on developing algorithmic tools to assess and mitigate such unfairness. However, there is little work on enhancing fairness in graph algorithms. Here, we develop a simple, effective and general method, CrossWalk, that enhances fairness of various graph algorithms, including influence maximization, link prediction and node classification, applied to node embeddings. CrossWalk is applicable to any random walk based node representation learning algorithm, such as DeepWalk and Node2Vec. The key idea is to bias random walks to cross group boundaries, by upweighting edges which (1) are closer to the groups’ peripheries or (2) connect different groups in the network. CrossWalk pulls nodes that are near groups’ peripheries towards their neighbors from other groups in the embedding space, while preserving the necessary str...
On Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections
International Conference on Learning Representations, 2021
Disparate impact has raised serious concerns in machine learning applications and its societal impacts. In response to the need of mitigating discrimination, fairness has been regarded as a crucial property in algorithmic designs. In this work, we study the problem of disparate impact on graph-structured data. Specifically, we focus on dyadic fairness, which articulates a fairness concept that a predictive relationship between two instances should be independent of the sensitive attributes. Based on this, we theoretically relate the graph connections to dyadic fairness on link predictive scores in learning graph neural networks, and reveal that regulating weights on existing edges in a graph contributes to dyadic fairness conditionally. Subsequently, we propose our algorithm, FairAdj, to empirically learn a fair adjacency matrix with proper graph structural constraints for fair link prediction, and in the meanwhile preserve predictive accuracy as much as possible. Empirical validation demonstrates that our method delivers effective dyadic fairness in terms of various statistics, and at the same time enjoys a favorable fairness-utility tradeoff.
Enhance Information Propagation for Graph Neural Network by Heterogeneous Aggregations
ArXiv, 2021
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data. Tens of different graph neural network variants have been proposed, most following a neighborhood aggregation scheme, where the node features are updated via aggregating features of its neighboring nodes from layer to layer. Though related research surges, the power of GNNs are still not on-par-with their counterpart CNNs in computer vision and RNNs in natural language processing. We rethink this problem from the perspective of information propagation, and propose to enhance information propagation among GNN layers by combining heterogeneous aggregations. We argue that as richer information are propagated from shallow to deep layers, the discriminative capability of features formulated by GNN can benefit from it. As our first attempt in this direction, a new generic GNN layer formulation and upon this a new GNN variant referred as HAG-Net is proposed. We empirically validate the effectiven...
Graph-MLP: Node Classification without Message Passing in Graph
ArXiv, 2021
Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data. Both spatial-based and spectral-based GNNs are relying on adjacency matrix to guide message passing among neighbors during feature aggregation. Recent works have mainly focused on powerful message passing modules, however, in this paper, we show that none of the message passing modules is necessary. Instead, we propose a pure multilayer-perceptron-based framework, Graph-MLP with the supervision signal leveraging graph structure, which is sufficient for learning discriminative node representation. In model-level, Graph-MLP only includes multi-layer perceptrons, activation function, and layer normalization. In the loss level, we design a neighboring contrastive (NContrast) loss to bridge the gap between GNNs and MLPs by utilizing the adjacency information implicitly. This design allows our model to be lighter and more robust when facing large-scale graph data and corrupted...
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
Cornell University - arXiv, 2021
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using the graph structures based on the relational inductive bias (homophily assumption). Though GNNs are believed to outperform NNs in real-world tasks, performance advantages of GNNs over graph-agnostic NNs seem not generally satisfactory. Heterophily has been considered as a main cause and numerous works have been put forward to address it. In this paper, we first show that not all cases of heterophily are harmful 1 for GNNs with aggregation operation. Then, we propose new metrics based on a similarity matrix which considers the influence of both graph structure and input features on GNNs. The metrics demonstrate advantages over the commonly used homophily metrics by tests on synthetic graphs. From the metrics and the observations, we find some cases of harmful heterophily can be addressed by diversification operation. With this fact and knowledge of filterbanks, we propose the Adaptive Channel Mixing (ACM) framework to adaptively exploit aggregation, diversification and identity channels in each GNN layer to address harmful heterophily. We validate the ACM-augmented baselines with 10 realworld node classification tasks. They consistently achieve significant performance gain and exceed the state-of-the-art GNNs on most of the tasks without incurring significant computational burden. Preprint. Under review.
Revisiting Heterophily For Graph Neural Networks
arXiv (Cornell University), 2022
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption). While GNNs have been commonly believed to outperform NNs in real-world tasks, recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory. Heterophily has been considered the main cause of this empirical observation and numerous works have been put forward to address it. In this paper, we first revisit the widely used homophily metrics and point out that their consideration of only graph-label consistency is a shortcoming. Then, we study heterophily from the perspective of post-aggregation node similarity and define new homophily metrics, which are potentially advantageous compared to existing ones. Based on this investigation, we prove that some harmful cases of heterophily can be effectively addressed by local diversification operation. Then, we propose the Adaptive Channel Mixing (ACM), a framework to adaptively exploit aggregation, diversification and identity channels node-wisely to extract richer localized information for diverse node heterophily situations. ACM is more powerful than the commonly used uni-channel framework for node classification tasks on heterophilic graphs and is easy to be implemented in baseline GNN layers. When evaluated on 10 benchmark node classification tasks, ACM-augmented baselines consistently achieve significant performance gain, exceeding state-of-theart GNNs on most tasks without incurring significant computational burden.
When Do GNNs Work: Understanding and Improving Neighborhood Aggregation
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020
Graph Neural Networks (GNNs) have been shown to be powerful in a wide range of graph-related tasks. While there exists various GNN models, a critical common ingredient is neighborhood aggregation, where the embedding of each node is updated by referring to the embedding of its neighbors. This paper aims to provide a better understanding of this mechanisms by asking the following question: Is neighborhood aggregation always necessary and beneficial? In short, the answer is no. We carve out two conditions under which neighborhood aggregation is not helpful: (1) when a node's neighbors are highly dissimilar and (2) when a node's embedding is already similar with that of its neighbors. We propose novel metrics that quantitatively measure these two circumstances and integrate them into an Adaptive-layer module. Our experiments show that allowing for node-specific aggregation degrees have significant advantage over current GNNs.