A Comprehensive 3D-Molded Bone Flap Protocol for Patient-Specific Cranioplasty (original) (raw)

Manufacture of custom-made cranial implants from DICOM® images using 3D printing, CAD/CAM technology and incremental sheet forming

Revista Brasileira de Engenharia Biomédica, 2014

Introduction: This work aims to pre-operatively manufacture custom-made low-cost implants and physical models ('biomodels') of fractured skulls. The pre-operative manufacturing of biomodels and implants allows physicians to study and plan surgery with a greater possibility of achieving the expected result. Customization contributes to both the esthetic and functional outcome of the implant because it considers the anatomy of each patient, while the low cost allows a greater number of people to potentially benefi t. Methods: From CT images of a fractured skull, a CAD model of the skull (biomodel) and a restorative implant were constructed digitally. The biomodel was then physically constructed with 3D Printing, and Incremental Sheet Forming (ISF) was used to manufacture the implant from a sheet of pure grade 2 titanium. Before cutting the implant's fi nal shape from a pre-formed sheet, heat treatment was performed to avoid deformations caused by residual stresses generated during the ISF process. Results: A comparison of the dimensions of the implant and its respective CAD biomodel revealed geometric discrepancies that can affect both functional and aesthetic effi ciency. Nevertheless, the fi nal shape preserved symmetry between the right and left sides of the skull. Electron microscopy analysis did not indicate the presence of elements other than pure titanium. Conclusions: Dimensional variability can be decreased with changes in the manufacturing process (i.e., forming and cutting) and the heating ramp. Despite biomedical characteristics, there was no contamination of the implant by harmful chemical elements. 3D Printing was effective in making the biomodel, enabling pre-operative planning and improving physicianpatient communication. Current results indicate that ISF is a process that can be used to obtain custom-made implants.

Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing

Journal of Cranio-Maxillofacial Surgery, 2014

Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant.

The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer

Journal of Neurosurgery, 2015

OBJECT Commercially available, preformed patient-specific cranioplasty implants are anatomically accurate but costly. Acrylic bone cement is a commonly used alternative. However, the manual shaping of the bone cement is difficult and may not lead to a satisfactory implant in some cases. The object of this study was to determine the feasibility of fabricating molds using a commercial low-cost 3D printer for the purpose of producing patient-specific acrylic cranioplasty implants. METHODS Using data from a high-resolution brain CT scan of a patient with a calvarial defect posthemicraniectomy, a skull phantom and a mold were generated with computer software and fabricated with the 3D printer using the fused deposition modeling method. The mold was used as a template to shape the acrylic implant, which was formed via a polymerization reaction. The resulting implant was fitted to the skull phantom and the cranial index of symmetry was determined. RESULTS The skull phantom and mold were su...

A Systematic Approach for Making 3D-Printed Patient-Specific Implants for Craniomaxillofacial Reconstruction

Engineering, 2020

Craniomaxillofacial reconstruction implants, which are extensively used in head and neck surgery, are conventionally made in standardized forms. During surgery, the implant must be bended manually to match the anatomy of the individual bones. The bending process is time-consuming, especially for inexperienced surgeons. Moreover, repetitive bending may induce undesirable internal stress concentration, resulting in fatigue under masticatory loading in vivo and causing various complications such as implant fracture, screw loosening, and bone resorption. There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction, although few reports have considered implant quality. In this paper, we present a systematic approach for making 3D-printed patientspecific surgical implants for craniomaxillofacial reconstruction. The approach consists of three parts: First, an easy-to-use design module is developed using Solidworks Ò software, which helps surgeons to design the implants and the axillary fixtures for surgery. Design engineers can then carry out the detailed design and use finite-element modeling (FEM) to optimize the design. Second, the fabrication process is carried out in three steps: ① testing the quality of the powder; ② setting up the appropriate process parameters and running the 3D printing process; and ③ conducting post-processing treatments (i.e., heat and surface treatments) to ensure the quality and performance of the implant. Third, the operation begins after the final checking of the implant and sterilization. After the surgery, postoperative rehabilitation follow-up can be carried out using our patient tracking software. Following this systematic approach, we have successfully conducted a total of 41 surgical cases. 3D-printed patient-specific implants have a number of advantages; in particular, their use reduces surgery time and shortens patient recovery time. Moreover, the presented approach helps to ensure implant quality.

Craniofacial Reconstruction by a Cost-Efficient Template-Based Process Using 3D Printing

Plastic and Reconstructive Surgery - Global Open, 2017

Craniofacial defects often result in aesthetic and functional deficits, which affect the patient's psyche and wellbeing. Patient-specific implants remain the optimal solution, but their use is limited or impractical due to their high costs. This article describes a fast and cost-efficient workflow of in-house manufactured patient-specific implants for craniofacial reconstruction and cranioplasty. As a proof of concept, we present a case of reconstruction of a craniofacial defect with involvement of the supraorbital rim. The following hybrid manufacturing process combines additive manufacturing with silicone molding and an intraoperative, manual fabrication process. A computer-aided design template is 3D printed from thermoplastics by a fused deposition modeling 3D printer and then silicone molded manually. After sterilization of the patient-specific mold, it is used intraoperatively to produce an implant from polymethylmethacrylate. Due to the combination of these 2 straightforward processes, the procedure can be kept very simple, and no advanced equipment is needed, resulting in minimal financial expenses. The whole fabrication of the mold is performed within approximately 2 hours depending on the template's size and volume. This reliable technique is easy to adopt and suitable for every health facility, especially those with limited financial resources in less privileged countries, enabling many more patients to profit from patient-specific treatment.

The “springform” technique in cranioplasty: custom made 3D-printed templates for intraoperative modelling of polymethylmethacrylate cranial implants

Acta Neurochirurgica

Background Manual moulding of cranioplasty implants after craniectomy is feasible, but does not always yield satisfying cosmetic results. In contrast, 3D printing can provide precise templates for intraoperative moulding of polymethylmethacrylate (PMMA) implants in cranioplasty. Here, we present a novel and easily implementable 3D printing workflow to produce patient-specific, sterilisable templates for PMMA implant moulding in cranioplastic neurosurgery. Methods 3D printable templates of patients with large skull defects before and after craniectomy were designed virtually from cranial CT scans. Both templates — a mould to reconstruct the outer skull shape and a ring representing the craniectomy defect margins — were printed on a desktop 3D printer with biocompatible photopolymer resins and sterilised after curing. Implant moulding and implantation were then performed intraoperatively using the templates. Clinical and radiological data were retrospectively analysed. Results Sixteen...

Development of Cranium 3Dimension-puzzle products using 3D printing

TECHNOARETE INTERNATIONAL, 2020

Anatomy is one of the most important and basic courses in health and medical education. Anatomical education used cadavers for its education media. Cadaver access is limited due to high prices and a limited donor. This triggered the development of anatomical education media, one of them is the use of 3-dimensional (3D) anatomical models. Additive manufacturing (AM), known as 3D printing, has developed rapidly over the last two decades and is used to produce physical models or prototypes. This research aimed to develop a 3D Cranium-puzzle product based on DICOM (digital imaging and communications in medicine) data processing. The data were converted into 3D using Fused Deposition Modeling (FDM) method. Data were obtained from the Department of Radiology, consisting of cranium data in the DICOM file. Cranium data in the DICOM file were converted into a 3D model and saved into an STL file. After getting the desired result, the threshold value was altered to determine the effect of the threshold value on the surface structure details. Anatomists validated the boundaries between bones until it meets the requirements according to the boundaries in the anatomical atlas. Finally, the 3D puzzle was printed using a 3D printer machine

Improvement in Cranioplasty: Advanced Prosthesis Biomanufacturing

Procedia CIRP, 2016

Additive manufacturing (AM) is a technology that enables the production of models and prosthesis directly from the 3D CAD model facilitating surgical procedures, implant quality and reducing risks. Furthermore, the additive manufacturing has been used to produce implants especially designed for a particular patient, with sizes, shapes and mechanical properties optimized, in many areas of medicine such as cranioplasty surgery. This work presents AM technologies applied to design and manufacture of a biomodel, in fact, an implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used for creation of anatomic biomodel of the bone defect for the surgical planning as well as to design and manufacture of the patient-specific implant, reducing duration of surgery besides improving the surgical accuracy due to preoperative planning of the anatomical details.