Redescending M-Estimator for Robust Regression (original) (raw)
Sign up for access to the world's latest research
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Sign up for access to the world's latest research
Related papers
Mathematical Problems in Engineering, 2021
Robust regression is an important iterative procedure that seeks analyzing data sets that are contaminated with outliers and unusual observations and reducing their impact over regression coefficients. Robust estimation methods have been introduced to deal with the problem of outliers and provide efficient and stable estimates in their presence. Various robust estimators have been developed in the literature to restrict the unbounded influence of the outliers or leverage points on the model estimates. Here, a new redescending M-estimator is proposed using a novel objective function with the prime focus on getting highly robust and efficient estimates that give promising results. It is evident from the results that, for normal and clean data, the proposed estimator is almost as efficient as ordinary least square method and, however, becomes highly resistant to outliers when it is used for contaminated datasets. e simulation study is being carried out to assess the performance of the proposed redescending M-estimator over different data generation scenarios including normal, t-distribution, and double exponential distributions with different levels of outliers' contamination, and the results are compared with the existing redescending M-estimators, e.g., Huber, Tukey Biweight, Hampel, and Andrew-Sign function. e performance of the proposed estimators was also checked using real-life data applications of the estimators and found that the proposed estimators give promising results as compared to the existing estimators.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Related papers
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015