Wavelength Division Multiplexing: An Overview & Recent Developments (original) (raw)
Related papers
Performance Analysis and enhancement of WDM optical networks
IJAERD, 2018
In this digital era the communication demand has increased from previous eras due to introduction of new communication techniques. As we can see there is increase in clients day by day, so we need huge bandwidth and high speed networks to deliver good quality of service to clients. Fibre optics communication is one of the major communication systems in modern era, which meets up the above challenges. This utilizes different types of multiplexing techniques to maintain good quality of service without traffic, less complicated instruments with good utilization of available resources .Wavelength Division Multiplexing (WDM) is one of them with good efficiency. It is based on dynamic light-path allocation. Here we have to take into consideration the physical topology of the WDM network and the traffic. We have designed here an 8-channel WDM system and carried out detailed analysis to evaluate the dependencies of the performance evaluating parameters onto the various system parameters. This paper focuses on design of an multi channel WDM trans-receiver System and then optimizing its performance parameters. Simultaneously evaluation of dependencies of various performance evaluating parameters onto various system parameters was obtained. Moreover effect of optical amplification was obtained onto system performance.
Fiber Optic Wavelength Division Multiplexing (WDM) Why Is WDM Used
With the exponential growth in communications, caused mainly by the wide acceptance of the Internet, many carriers are finding that their estimates of fiber needs have been highly underestimated. Although most cables included many spare fibers when installed, this growth has used many of them and new capacity is needed. Three methods exist for expanding capacity: 1) installing more cables, 2) increasing system bitrate to multiplex more signals or 3) wavelength division multiplexing. Installing more cables will be the preferred method in many cases, especially in metropolitan areas, since fiber has become incredibly inexpensive and installation methods more efficient (like mass fusion splicing.) But if conduit space is not available or major construction is necessary, this may not be the most cost effective. Increasing system bitrate may not prove cost effective either. Many systems are already running at SONET OC-48 rates (2.5 GB/s) and upgrading to OC-192 (10 GB/s) is expensive, requires changing out all the electronics in a network, and adds 4 times the capacity, more than may be necessary. The third alternative, wavelength division multiplexing (WDM), has proven more cost effective in many instances. It allows using current electronics and current fibers, but simply shares fibers by transmitting different channels at different wavelengths (colors) of light. Systems that already use fiber optic amplifiers as repeaters also do not require upgrading for most WDM systems.
WDM Optical Communication Networks: Progress and Challenges
While optical-transmission techniques have been researched for quite some time, optical "networking" studies have been conducted only over the past dozen years or so. The field has matured enormously over this time: many papers and Ph.D. dissertations have been produced, a number of prototypes and testbeds have been built, several books have been written, a large number of startups have been formed, and optical WDM technology is being deployed in the marketplace at a very rapid rate. The objective of this paper is to summarize the basic optical-networking approaches, briefly report on the WDM deployment strategies of two major U.S. carriers, and outline the current research and development trends on WDM optical networks.
Architectures and technologies for wavelength division multiplexed access networks
2006
Optical fibre communication is very much preferred for the communication of signals over bandwidth of a gigabits per second over distances more than hundreds of kilometres. For a long period of time optical fibre communication has been about how to provide higher bandwidths with reduced cost per bit transmitted. However, this trend has changed from optical transmission to optical networking. By exploiting the wavelength division multiplexing (WDM) technology, optical networks have expanded from backbone networks to metropolitan and access networks to deliver high bandwidth services to the users in a seamless fashion with reduced cost. The ultimate evolution of the optical access network involves fibre-to-the-home (FTTH) technologies, which can potentially offer every kind of information and communication related services. Out of all FTTH technologies, the passive optical network (PON) can potentially offer the most cost-effective solution as the optical network is shared between a n...