Bacillus thuringiensis Spores and Vegetative Bacteria: Infection Capacity and Role of the Virulence Regulon PlcR Following Intrahaemocoel Injection of Galleria mellonella (original) (raw)

Occurrence and Linkage Between Secreted Insecticidal Toxins in Natural Isolates of Bacillus thuringiensis

Current Microbiology, 2003

Little is known about the occurrence and linkage between secreted insecticidal virulence factors in natural populations of Bacillus thuringiensis (Bt). We carried out a survey of 392 Bt strains isolated from various samples originating from 31 countries. The toxicity profile of the culture supernatants of these strains was determined individually against Anthonomus grandis (Coleoptera) and Spodoptera littoralis (Lepidoptera). We analyzed ␤-exotoxin I production and searched for the genes encoding Vip1-2, Vip3, and Cry1I toxins in 125 of these strains. Our results showed that these insecticidal toxins were widespread in Bt but that their distribution was nonrandom, with significant linkage observed between vip3 and cry1I and between vip1-2 and ␤-exotoxin I. Strains producing significant amounts of ␤-exotoxin I were more frequently isolated from invertebrate samples than from dust, water, soil, or plant samples.

Midgut Bacteria Required for Bacillus thuringiensis Insecticidal Activity

Proceedings of The National Academy of Sciences, 2006

Bacillus thuringiensis is the most widely applied biological insecticide and is used to manage insects that affect forestry and agriculture and transmit human and animal pathogens. This ubiquitous spore-forming bacterium kills insect larvae largely through the action of insecticidal crystal proteins and is commonly deployed as a direct bacterial spray. Moreover, plants engineered with the cry genes encoding the B. thuringiensis crystal proteins are the most widely cultivated transgenic crops. For decades, the mechanism of insect killing has been assumed to be toxin-mediated lysis of the gut epithelial cells, which leads to starvation, or B. thuringiensis septicemia. Here, we report that B. thuringiensis does not kill larvae of the gypsy moth in the absence of indigenous midgut bacteria. Elimination of the gut microbial community by oral administration of antibiotics abolished B. thuringiensis insecticidal activity, and reestablishment of an Enterobacter sp. that normally resides in the midgut microbial community restored B. thuringiensis-mediated killing. Escherichia coli engineered to produce the B. thuringiensis insecticidal toxin killed gypsy moth larvae irrespective of the presence of other bacteria in the midgut. However, when the engineered E. coli was heat-killed and then fed to the larvae, the larvae did not die in the absence of the indigenous midgut bacteria. E. coli and the Enterobacter sp. achieved high populations in hemolymph, in contrast to B. thuringiensis, which appeared to die in hemolymph. Our results demonstrate that B. thuringiensis-induced mortality depends on enteric bacteria.

Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

Toxins, 2014

Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize

Understanding the impact of Bacillus thuringiensis proteins on non-target organisms

International Journal of Scientific Research in Biological Sciences

Bacillus thuringiensis (Bt) is a spore-forming, gram-positive, aerobic, rod-shaped bacterium. During sporulation, Bt produces proteinaceous crystals called Cry proteins that are lethal to many insects' species, so are commonly used as biological pesticide. Transgenic Bt crops are genetically altered to express insecticidal toxins that cause fatality of a number of general agricultural pests. The insecticidal toxins formed by Bt crops possess narrow range of toxicity and therefore less non-target impacts as compared to conventional insecticides. A decrease in the amount and regularity of insecticide applications are financially advantageous. In numerous regions of the world, insecticide inputs have been significantly reduced because of Bt. The use of Bt crop technology might help in worldwide food security by escalating the amount and steadiness of crop yields. Though impact of Bt toxin on non-targeted organism is a serious issue yet no conclusion could still be drawn from several studies. This review summarizes the benefits of Bt crops including the impact on non-targeted organisms and Bt toxins having potential risks with respect to the environment.

How Bacillus thuringiensis has evolved specific toxins to colonize the insect world

Trends in Genetics, 2001

Spore coat protein synergizes Bacillus thuringiensis crystal toxicity for the Indianmeal moth (Plodia interpunctella). Curr. Microbiol. 36, 278-282 c Schnepf, E. et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806 Box 1. The armory of an insect pathogen

Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella)

Applied and environmental microbiology, 1998

We studied the effects of combinations of Bacillus thuringiensis spores and toxins on the mortality of diamondback moth (Plutella xylostella) larvae in leaf residue bioassays. Spores of B. thuringiensis subsp. kurstaki increased the toxicity of crystals of B. thuringiensis subsp. kurstaki to both resistant and susceptible larvae. For B. thuringiensis subsp. kurstaki, resistance ratios were 1,200 for a spore-crystal mixture and 56,000 for crystals without spores. Treatment of a spore-crystal formulation of B. thuringiensis subsp. kurstaki with the antibiotic streptomycin to inhibit spore germination reduced toxicity to resistant larvae but not to susceptible larvae. In contrast, analogous experiments with B. thuringiensis subsp. aizawai revealed no significant effects of adding spores to crystals or of treating a spore-crystal formulation with streptomycin. Synergism occurred between Cry2A and B. thuringiensis subsp. kurstaki spores against susceptible larvae and between Cry1C and B....

Bacillus thuringiensis : from biodiversity to biotechnology

Journal of Industrial Microbiology & Biotechnology, 1997

is a Gram-positive bacterium, widely used in agriculture as a biological pesticide. The biocidal activity mainly resides in a parasporal protein inclusion body, or crystal. The inclusion is composed of one or more types of δ-endotoxins (Cry and Cyt proteins). Cry proteins are selectively toxic to different species from several invertebrate phyla: arthropods (mainly insects), nematodes, flatworms and protozoa. The mode of action of the insecticidal proteins is still a matter of investigation; generally, the active toxin is supposed to bind specific membrane receptors on the insect midgut brush-border epithelium, leading to intestinal cell lysis and subsequent insect death by starvation or septicemia. The toxin-encoding cry genes have been extensively studied and expressed in a large number of prokaryotic and eukaryotic organisms. The expression of such genes in transgenic plants has provided a powerful alternative for crop protection.