Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth (original) (raw)

Dual Targeting of Insulin Receptor and KIT in Imatinib-Resistant Gastrointestinal Stromal Tumors

Cancer Research, 2017

Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of KIT secondary mutations, but not in imatinib-sensitive GIST cells (GIST882 and GIST-T1). Treatment with linsitinib, a specific IR inhibitor, inhibited IR and downstream intermediates AKT, MAPK, and S6 in GIST430 and GIST48, but not in GIST882, exerting minimal effect on KIT phosphorylation in these cell lines. Additive effects showing increased apoptosis, antiproliferative effects, cell-cycle arrest, and decreased pAKT and pS6 expression, tumor growth, migration, and invasiveness were observed in imatinib-resistant GIST cells with IR activation after coordinated inhibition of IR and KIT by linsitinib (or IR shRNA) and imatinib, respectively, compared with either intervention alone. IGF2 overexpression was responsible for IR activation in imatinib-resistant GIST cells, whereas IR activation did not result from IR amplification, IR mutation, or KIT phosphorylation. Our findings suggest that combinatorial inhibition of IR and KIT warrants clinical evaluation as a novel therapeutic strategy in imatinib-resistant GISTs. Cancer Res; 77(18); 5107-17.

Insights into ligand stimulation effects on gastro-intestinal stromal tumors signalling

Cellular Signalling, 2017

Mutations in KIT or PDGFRA are responsible for N 85% of gastrointestinal stromal tumors. The introduction of imatinib in the GIST therapy scheme revolutionized the patient outcome. Unfortunately, the therapy allows the disease stabilization instead of curation. Furthermore the resistance to the inhibitor arises in most cases within two first years of therapy. A thorough investigation of the signalling pathways activated by the major PDGFRA and KIT mutants encountered in the GIST landscape allowed to identify striking differences between the two receptor tyrosine kinases. PDGFRA mutants were not responsive to their ligand, PDGFAA, and displayed a high constitutive kinase activity. In contrast, all KIT mutants retained, in addition to their constitutive activation, the ability to be stimulated by their ligand. Kit mutants displayed a lower intrinsic kinase activity relative to PDGFRA mutants, while the KIT Exon 11 deletion mutant exhibited the highest intrinsic kinase activity among KIT mutants. At the transcriptomic level, the MAPK pathway was established as the most prominent activated pathway, which is commonly up-regulated by all PDGFRA and KIT mutants. Inhibition of this pathway, using the MEK inhibitor PD0325901, reduced the proliferation of GIST primary cells at nanomolar concentrations. Altogether, our data demonstrate the high value of MEK inhibitors for combination therapy in GIST treatment and more importantly the interest of evaluating the SCF expression profile in GIST patients presenting KIT mutations.

Efficacy of the Kinase Inhibitor SU11248 against Gastrointestinal Stromal Tumor Mutants Refractory to Imatinib Mesylate

Clinical Cancer Research, 2006

Purpose: The majority of gastrointestinal stromal tumors harbor mutations in the receptor tyrosine kinases KIT or platelet-derived growth factor receptor A (PDGFRA), and respond to treatment with the tyrosine kinase inhibitor imatinib. Some tumors, however, show primary resistance to imatinib treatment, and most others become resistant during treatment. The most common mechanism of imatinib resistance involves specific mutations in the kinase domains of KIT or PDGFRA. We tested the activity of SU11248, an orally active small-molecule tyrosine kinase inhibitor, to inhibit important imatinib-resistant KIT and PDGFRA mutants. Experimental Design: Primary imatinib-resistant tumor cells and cell lines expressing clinically identified imatinib-resistant KIT-V654A, KIT-T670I, or PDGFRA-D842V mutant isoforms were evaluated for sensitivity to SU11248 by Western immunoblotting and proliferation assays. Three patients with the KIT-V654A mutation were treated with SU11248. Results: Based on ex ...

Optimizing Tyrosine Kinase Inhibitor Therapy in Gastrointestinal Stromal Tumors: Exploring the Benefits of Continuous Kinase Suppression

The Oncologist, 2013

Background. The oral tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of gastrointestinal stromal tumors (GISTs), most of which harbor oncogenic mutation in genes that encode the receptor tyrosine kinases KIT or PDGFA. Imatinib is the standard of care for patients with advanced GIST and for patients with primary GIST at significant risk of recurrence after surgery. Design. This review discusses data supporting continuous kinase suppression with imatinib and key issues, including response to imatinib reintroduction, effect of treatment interruption on secondary resistance to imatinib, and prognostic factors associated with sustained response to imatinib. Results. Long-term follow-up results of the B2222 study and updated results of the BFR14 trial demonstrate that continuous imatinib treatment in patients with advanced GIST is asso-ciated with reduced risk of progression. For patients progressing on or intolerant of imatinib, continuing therapy with TKIs sunitinib followed by regorafenib is recommended. In the adjuvant setting, final results of the trial by the Scandinavian Sarcoma Group and the Sarcoma Group of the Arbeitsgemeinschaft Internistische Onkologie demonstrate that 3 years of adjuvant imatinib, compared with 1 year, significantly reduces the risk of recurrence and improves overall survival of patients with KIT-positive GIST at high risk of recurrence. Conclusions. Maintenance of therapy with TKIs is the key to successful treatment of GIST. Results from recent studies provide a strong rationale for continuous imatinib treatment for 3 years following surgical resection and long-term continuous administration in advanced or metastatic GIST. The Oncologist 2013;18:1192-1199 Implications for Practice: Imatinib interruption in advanced setting results in rapid progression in the vast majority of patients and should not be recommended outside clinical trials unless patients experienced significant toxicity. The results observed in advanced GIST need to be considered also for the use of imatinib in the adjuvant setting where the optimal duration of imatinib is unknown (at least three years) and where reintroduction of imatinib is the standard of care in case of disease recurrence.

A Missense Mutation in KIT Kinase Domain 1 Correlates with Imatinib Resistance in Gastrointestinal Stromal Tumors

Cancer Research, 2004

KIT gain of function mutations play an important role in the pathogenesis of gastrointestinal stromal tumors (GISTs). Imatinib is a selective tyrosine kinase inhibitor of ABL, platelet-derived growth factor receptor (PDGFR), and KIT and represents a new paradigm of targeted therapy against GISTs. Here we report for the first time that, after imatinib treatment, an additional specific and novel KIT mutation occurs in GISTs as they develop resistance to the drug. We studied 12 GIST patients with initial near-complete response to imatinib. Seven harbored mutations in KIT exon 11, and 5 harbored mutations in exon 9. Within 31 months, six imatinib-resistant rapidly progressive peritoneal implants (metastatic foci) developed in five patients. Quiescent residual GISTs persisted in seven patients. All six rapidly progressive imatinib-resistant implants from five patients show an identical novel KIT missense mutation, 1982T3 C, that resulted in Val654Ala in KIT tyrosine kinase domain 1. This novel mutation has never been reported before, is not present in pre-imatinib or post-imatinib residual quiescent GISTs, and is strongly correlated with imatinib resistance. Allelic-specific sequencing data show that this new mutation occurs in the allele that harbors original activation mutation of KIT.

Selecting Tyrosine Kinase Inhibitors for Gastrointestinal Stromal Tumor with Secondary KIT Activation-Loop Domain Mutations

PLoS ONE, 2013

Advanced gastrointestinal stromal tumors (GIST), a KIT oncogene-driven tumor, on imatinib mesylate (IM) treatment may develop secondary KIT mutations to confer IM-resistant phenotype. Second-line sunitinib malate (SU) therapy is largely ineffective for IM-resistant GISTs with secondary exon 17 (activation-loop domain) mutations. We established an in vitro cellbased platform consisting of a series of COS-1 cells expressing KIT cDNA constructs encoding common primary6secondary mutations observed in GISTs, to compare the activity of several commercially available tyrosine kinase inhibitors on inhibiting the phosphorylation of mutant KIT proteins at their clinically achievable plasma steady-state concentration (Css). The inhibitory efficacies on KIT exon 11/17 mutants were further validated by growth inhibition assay on GIST48 cells, and underlying molecular-structure mechanisms were investigated by molecular modeling. Our results showed that SU more effectively inhibited mutant KIT with secondary exon 13 or 14 mutations than those with secondary exon 17 mutations, as clinically indicated. On contrary, at individual Css, nilotinib and sorafenib more profoundly inhibited the phosphorylation of KIT with secondary exon 17 mutations and the growth of GIST48 cells than IM, SU, and dasatinib. Molecular modeling analysis showed fragment deletion of exon 11 and point mutation on exon 17 would lead to a shift of KIT conformational equilibrium toward active form, for which nilotinib and sorafenib bound more stably than IM and SU. In current preclinical study, nilotinib and sorafenib are more active in IM-resistant GISTs with secondary exon 17 mutation than SU that deserve further clinical investigation.

Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor

Cancer Chemotherapy and Pharmacology, 2011

Gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm of the GI tract and one of the most common sarcomas, is dependent on the expression of the mutated KIT or platelet-derived growth factor receptor in most cases. Imatinib mesylate potently abrogates the effects of KIT signaling by directly binding into the ATP-binding pocket of the kinase. It is becoming increasingly apparent that the binding affinity of imatinib for the receptor is dependent on the type and location of mutation. Within KIT, patients whose tumor has an exon 9 mutation are treated by many clinicians with higher doses of imatinib than those patients with mutations within exon 11. Additionally, there are over 400 unique mutations within exon 11 that may have distinctly different binding affinity for imatinib as well as other kinases. Secondary KIT mutations generally occur at a codon where imatinib binds resulting in KIT reactivation and resistance. Sunitinib malate, a second-generation KIT inhibitor is active in imatinib-resistant disease and is FDA-approved for use in this setting. In this review, we describe the biology of the genes and gene mutations responsible for GIST and discuss known and potential clinical implications.