A Sharp Estimate for Neumann Eigenvalues of the Laplace-Beltrami Operator for Domains in a Hemisphere (original) (raw)
Abstract
Here, we prove an isoperimetric inequality for the harmonic mean of the first [Formula: see text] non-trivial Neumann eigenvalues of the Laplace–Beltrami operator for domains contained in a hemisphere of [Formula: see text].
Figures (3)
The following properties are also proved in [4]. For the proof of our main result, Theorem 1.1, it is convenient to parametrize the points of Q in terms of the coordinates of their stereographic projection (see, for example, [7, 13]). For a point P €Q, we denote by P’ its stereographic projection from the South Pole S onto the “equator” (as illustrated in Figure 1).
FIGURE 1. Stereographic coordinates between ON and OP, where N stands for the North Pole. Moreover we denote by y the angk between SN and SP. It is clear that 6 = 2y and tany = s. Hence,
Using ®; as test function in the variational characterization (3) of ju;(Q), and taking into account the orthogonality conditions (13), we get Recalling the definition of ®; given in (12), we get
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (19)
- M. S. Ashbaugh, Open problems on eigenvalues of the Laplacian, Analytic and geometric inequalities and applications, 13-28, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999.
- M. S. Ashbaugh, and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. (2) 135 (1992), no. 3, 601-628.
- M. S. Ashbaugh, and R. D. Benguria, Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions, SIAM J. Math. Anal. (24) 3 (1993), 557-570.
- M. S. Ashbaugh, and R. D. Benguria, Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature, J. London Math. Soc. (2) 52 (1995), 402-416.
- M. S. Ashbaugh, and R. D. Benguria, A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S N , Trans. Amer. Math. Soc. 353 (2001), no. 3, 105-1087.
- C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Pitman , Boston, Mass.-London, 1980.
- F. Brock, and F. Chiacchio, in preparation.
- F. Brock, F. Chiacchio, and G. di Blasio, Optimal Szegö-Weinberger type inequalities, Commun. Pure Appl. Anal. 15 (2016), no. 2, 367-383.
- D. Bucur, and A. Henrot, Maximization of the second non-trivial Neumann eigenvalue, aeXiv:1801.07435v1.
- I. Chavel, Eigenvalues in Riemannian geometry, Academic, New York, 1984.
- I. Chavel, Lowest-eigenvalue inequalities, in: Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii (1979), in: Proc. Sympos. Pure Math., vol. XXXVI, American Mathematical Society, Providence, RI, 1980, 79-89.
- F. Chiacchio, and G. di Blasio, Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), no. 2, 199-216.
- L. Grafakos, Modern Fourier analysis. Third edition. Graduate Texts in Mathematics, 250. Springer, New York, 2014.
- A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
- A. Henrot (ed), Shape Optimization and Spectral Theory. De Gruyter open (2017), freely downloadable at https://www.degruyter.com/view/product/490255.
- R.S. Laugesen, and B. A. Siudeja, Maximizing Neumann fundamental tones of triangles, J. Math. Phys. 50 (2009), no. 11, 112903, 18 pp.
- G. Szegő, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3, (1954), 343-356.
- Q. Wang, and C. Xia, On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann Laplacian, arXiv:1808.09520v1.
- H. Weinberger, An isoperimetric inequality for the N -dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636.