Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters (original) (raw)

Silicon nanowire-based solar cells

Nanotechnology, 2008

The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm −2 were obtained.

Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass

Progress in Photovoltaics: Research and Applications, 2012

We present a single pump-down process to texture hydrogenated amorphous silicon solar cells. Mats of p-type crystalline silicon nanowires were grown to lengths of 1 mm on glass covered with flat ZnO using a plasma-assisted Sn-catalyzed vapor-liquid-solid process. The nanowires were covered with conformal layers of intrinsic and n-type hydrogenated amorphous silicon and a sputtered layer of indium tin oxide. Each cell connects in excess of 10 7 radial junctions over areas of 0.126 cm². Devices reach open-circuit voltages of 0.8 V and short-circuit current densities of 12.4 mA cm À2 , matching those of hydrogenated amorphous silicon cells deposited on textured substrates.

Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application

Materials Letters, 2009

Tin-catalyzed silicon nanowires were synthesized for solar cells application. Voluminous silicon nanowires were fabricated on single crystalline silicon wafer. Optical reflectance and solar cell efficiency of the synthesized silicon nanowires were explored. The reflectance of as-synthesized silicon nanowires was obtained approximately 5% in the short wavelength region (λ b 500 nm). A short circuit current of 2.3 mA/cm 2 and open circuit voltage of 520 mV for 1 cm 2 SiNWs solar cell was obtained.

Effect of nanowire length on the performance of silicon nanowires based solar cell

Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014

Currently, silicon nanowires (SiNWs) are attracting attention as promising candidate materials for developing the next-generation solar cells to realize both low cost and high efficiency due to their unique structural, electrical, and optical properties. In this paper, a vertical-aligned SiNWs array has been prepared by metal-assistant chemical etching technique and implemented on SiNW array textured solar cells for photovoltaic application. The shape and size of SiNWs were controlled by etching time of 30 min, 45 min and 60 min with the length of SiNWs of 4 μm, 6 μm and 8 μm, respectively. The etching rate was estimated to be about 133 nm per minute. The optical properties of a SiNWs array with different lengths were investigated in terms of optical reflection property. Less than 6% reflection ratio from 300 nm to 800 nm wavelength was achieved. In addition, I-V characteristic was used to estimate the dependence of the SiNWs length on the performance of SiNWs based solar cell. Conservation efficiencies were achieved of 1.71%, 2.19%, and 2.39% corresponding to 4 μm, 6 μm and 8 μm SiNWs in length, respectively.

Hybrid Silicon Nanowires for Solar Cell Applications

Emerging Solar Energy Materials

The global human population has been growing by around 1.1% per year; such growth rate will lead the humanity to cross the 10 billion-people threshold by the end of the first half of this century. Such increase is already putting a huge strain on the nonrenewable sources of energy like fossil fuel, which will run out and come to an end in few decades. Due to these social and economic trends, renewable sources of energy, such as solar cells, have attracted a huge interest as the ultimate alternative to solve humanity's problems. Among several emerging materials, porous silicon nanowires (PSiNWs) become an active research subject nowadays in photovoltaic application mainly due to its good light trapping effect. The etched nanowires obtained by using metal-assisted chemical etching method (MACE) can reach a low reflection in the visible range. Recently, hybrid silicon nanowires/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at low temperature. In this chapter, we will present the synthesis of SiNWs and the last progress on the fabrication of hybrid solar cells using various organic semiconductors.