Recent results from studies of electron beam phenomena in space plasmas (original) (raw)

Abstract

1992 0032-0633/92 SS.tXI+O.Cnl FTinted in Gnat Britain.

Figures (21)

FiG, 2. THE ELECTRON RETURN CURRENT-PAYLOAD POTENTIAL CHARACTERISTIC OF THE CHARGE-2 MOTHER PAYLOAD (FROM NEUvBERT et al., 1990a).

FiG, 2. THE ELECTRON RETURN CURRENT-PAYLOAD POTENTIAL CHARACTERISTIC OF THE CHARGE-2 MOTHER PAYLOAD (FROM NEUvBERT et al., 1990a).

Fic. 3. CURRENT COLLECTION BY THE CHARGE-2 DAUGHTER  PAYLOAD VS VEHICLE POTENTIAL COMPARED WITH : THE LANG-  MUIR AND BLODGETT MODEL (SOLID LINE) AND THE PARKER  AND MURPHY MODEL (DASHED LINE) (FROM MYERs ef al, 1989).

Fic. 3. CURRENT COLLECTION BY THE CHARGE-2 DAUGHTER PAYLOAD VS VEHICLE POTENTIAL COMPARED WITH : THE LANG- MUIR AND BLODGETT MODEL (SOLID LINE) AND THE PARKER AND MURPHY MODEL (DASHED LINE) (FROM MYERs ef al, 1989).

The observations of current collection during the CHARGE-2 flight are summarized in Fig. 5. This shows the fraction of the beam current collected by the daughter as function of altitude. The labels SQ2-  SQ6 mark the beam-emission sequences performed

The observations of current collection during the CHARGE-2 flight are summarized in Fig. 5. This shows the fraction of the beam current collected by the daughter as function of altitude. The labels SQ2- SQ6 mark the beam-emission sequences performed

Fic. 6. MODEL ESTIMATES OF THE UPWARD AND DOWNWARD DIFFERENTIAL ELECTRON FLUX AS A FUNCTION OF ENERGY AT THE SPACECRAFT ALTITUDE.

Fic. 6. MODEL ESTIMATES OF THE UPWARD AND DOWNWARD DIFFERENTIAL ELECTRON FLUX AS A FUNCTION OF ENERGY AT THE SPACECRAFT ALTITUDE.

Fic. 8. MODEL ESTIMATES OF THE BEAM ATMOSPHERE INTER- ACTION (BAI) GAIN FACTOR A AS A FUNCTION OF THE SPACECRAFT PARAMETER v (FROM NEUBERT AND BANKS, 1990).

Fic. 8. MODEL ESTIMATES OF THE BEAM ATMOSPHERE INTER- ACTION (BAI) GAIN FACTOR A AS A FUNCTION OF THE SPACECRAFT PARAMETER v (FROM NEUBERT AND BANKS, 1990).

Fic. 9. MODEL ESTIMATES OF THE PLASMA DENSITY IN THE BEAM FLUX-TUBE AS A FUNCTION OF ALTITUDE (HEAVY LINE) AND AMBIENT PLASMA DENSITY (THIN LINE).  The spacecraft altitude is indicated by the dashed line (from Neubert and Banks, 1990).

Fic. 9. MODEL ESTIMATES OF THE PLASMA DENSITY IN THE BEAM FLUX-TUBE AS A FUNCTION OF ALTITUDE (HEAVY LINE) AND AMBIENT PLASMA DENSITY (THIN LINE). The spacecraft altitude is indicated by the dashed line (from Neubert and Banks, 1990).

Fic. 10. ECHO-7 OBSERVATIONS OF THE HOT PLASMA FOR THREE INJECTION PITCH ANGLES IN TERMS OF THE  FLOATING POTENTIAL DECREASE OF THE PDP PAYLOAD BODY, PROPORTIONAL TO kT, AS A FUNCTION OF  DISTANCE TRANSVERSE FROM THE BEAM INJECTION FIELD LINE, ALL FOR 36-kV, 180 mA INJECTIONS (FROM WINCKLER et al., 1989).

Fic. 10. ECHO-7 OBSERVATIONS OF THE HOT PLASMA FOR THREE INJECTION PITCH ANGLES IN TERMS OF THE FLOATING POTENTIAL DECREASE OF THE PDP PAYLOAD BODY, PROPORTIONAL TO kT, AS A FUNCTION OF DISTANCE TRANSVERSE FROM THE BEAM INJECTION FIELD LINE, ALL FOR 36-kV, 180 mA INJECTIONS (FROM WINCKLER et al., 1989).

Fic. 11. PARTICLE SIMULATION OF THE INJECTION OF ELECTRON BEAMS FROM SPACECRAFT. Contours of (a) the charge density of the beam and the spacecraft, (b) the plasma electron density, and 0) the plasma ion density at w,,f = 120. Successive contours in (a) differ by a factor of 3.16 while those in (b) and (c) decrease linearly f from the maximum value down to 8% of the maximum value. The arrows in (b) and (c) indicate the direction of the plasma fiows in response to the beam injection. The shaded areas indicate the region where the density is smaller than in the initial plasma density (from Winglee and  Pritchett, 1988).

Fic. 11. PARTICLE SIMULATION OF THE INJECTION OF ELECTRON BEAMS FROM SPACECRAFT. Contours of (a) the charge density of the beam and the spacecraft, (b) the plasma electron density, and 0) the plasma ion density at w,,f = 120. Successive contours in (a) differ by a factor of 3.16 while those in (b) and (c) decrease linearly f from the maximum value down to 8% of the maximum value. The arrows in (b) and (c) indicate the direction of the plasma fiows in response to the beam injection. The shaded areas indicate the region where the density is smaller than in the initial plasma density (from Winglee and Pritchett, 1988).

Fic. 13. MAXIMUM AND MINIMUM RESONANCE ENERGY FOR CHERENKOV RESONANCE. Shaded areas indicate regions of resonance.

Fic. 13. MAXIMUM AND MINIMUM RESONANCE ENERGY FOR CHERENKOV RESONANCE. Shaded areas indicate regions of resonance.

Fic. 14. MAXIMUM AND MINIMUM RESONANCE ENERGY FOR CYCLOTRON RESONANCE. Shaded areas indicate regions of resonance.

Fic. 14. MAXIMUM AND MINIMUM RESONANCE ENERGY FOR CYCLOTRON RESONANCE. Shaded areas indicate regions of resonance.

Fic. 15. A REPRESENTATIVE SPECTROGRAM OF THE ELECTRIC FIELD INTENSITIES FOR A NIGHT-SIDE CROSSING OF THE AURORAL FIELD LINES AS OBSERVED BY DE-1 (FROM GURNETT ef al., 1983).

Fic. 15. A REPRESENTATIVE SPECTROGRAM OF THE ELECTRIC FIELD INTENSITIES FOR A NIGHT-SIDE CROSSING OF THE AURORAL FIELD LINES AS OBSERVED BY DE-1 (FROM GURNETT ef al., 1983).

Fic. 17. THE MAGNETIC FIELD IN THE FREQUENCY RANGES 0-10, 20-10, AND 20-30 kHz AS A FUNCTION OF TIME. The PDP is free-fiying and the FPEG is pulsed at 1.22 kHz (from Bush et al., 1987; Neubert e¢ al., 1988).

Fic. 17. THE MAGNETIC FIELD IN THE FREQUENCY RANGES 0-10, 20-10, AND 20-30 kHz AS A FUNCTION OF TIME. The PDP is free-fiying and the FPEG is pulsed at 1.22 kHz (from Bush et al., 1987; Neubert e¢ al., 1988).

Fic. 18. MAGNETIC FIELD AMPLITUDE OF THE HARMONICS OF THE BEAM PULSING FREQUENCY (1.22 kHz) aT THREE DIFFERENT LOCATIONS OF THE PDP RELATIVE TO THE BEAM (FROM REEVES et ai., 1988a).

Fic. 18. MAGNETIC FIELD AMPLITUDE OF THE HARMONICS OF THE BEAM PULSING FREQUENCY (1.22 kHz) aT THREE DIFFERENT LOCATIONS OF THE PDP RELATIVE TO THE BEAM (FROM REEVES et ai., 1988a).

duty cycle has been studied by injecting a sequence of pulses with constant pulsing frequency and varying the duty cycle. Figure 20 shows the magnetic field amplitude observed in the payload bay of the first  hybrid waves as suggested by computer particle simu- lations (Matsumoto and Fukuchi, 1985; Hwang and Okuda, 1989).  The denendence of the wave feld amniitnde an the

duty cycle has been studied by injecting a sequence of pulses with constant pulsing frequency and varying the duty cycle. Figure 20 shows the magnetic field amplitude observed in the payload bay of the first hybrid waves as suggested by computer particle simu- lations (Matsumoto and Fukuchi, 1985; Hwang and Okuda, 1989). The denendence of the wave feld amniitnde an the

FIG. 20. MAGNETIC FIELD AMPLITUDE OF THE FUNDAMENTAL FREQUENCY AS A FUNCTION OF DUTY CYCLE. The solid line is the duty cycle factor D arbitrarily normalized  to 0.1 (from Reeves et al., 1990b).

FIG. 20. MAGNETIC FIELD AMPLITUDE OF THE FUNDAMENTAL FREQUENCY AS A FUNCTION OF DUTY CYCLE. The solid line is the duty cycle factor D arbitrarily normalized to 0.1 (from Reeves et al., 1990b).

Fic. 21. THE MAGNETIC FIELD AMPLITUDE OF THE FUN- DAMENTAL AS A FUNCTION OF THE PULSING FREQUENCY. Predicted curves are shown for Cherenkov root! and root2. The size of the markers indicate the duty cycle (from Reeves et al., 1990b).

Fic. 21. THE MAGNETIC FIELD AMPLITUDE OF THE FUN- DAMENTAL AS A FUNCTION OF THE PULSING FREQUENCY. Predicted curves are shown for Cherenkov root! and root2. The size of the markers indicate the duty cycle (from Reeves et al., 1990b).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (127)

  1. Abe, Y., Erickson, K. N. and Winckler, J. R. (1988) ELF electric turbulence near an electron beam-emitting rocket in the aurora1 ionosphere. Plan& Space Sci. 36,235.
  2. Amme. R. C. (1969) Orixin of secondarv electrons eiected from gas-covered surfa& by fast neut& beams. J.-davn. Phys. SO, 1891.
  3. Amoldy, R. L.. Pollock, C. and Winckler, J. R. (1985) The energization of electrons and ions by electron beams injected in the ionosphere. J. geophys. Res. 90.5197. Amoldy. R. L. and Winckler, J. R. (1981) The hot plasma environment and floating potentials of an electron-beam- emitting rocket in the ionosphere. J. geophys. Res. 86,575.
  4. Banks, P. M., Chappell, C. R. and Nagy, A. F. (1974) A new model for the interaction of auroral electrons with the atmosphere: spectral degradation, backscatter, optical ernis&n, and ibnixation. 1. geophys. Res. 79.1459. - Banks.
  5. P. M.. Fraser-Smith. A. C. and Gilchriat. B. E. (1991) Ionospheric modificationusing relativistic &on beams.
  6. AGARD Conference Proceedings, No. 785, pp. 22-l-22- 17, Bergen, Norway.
  7. Banks, P. M. and Gilchrist, B. E. (1985) Artificial plasma density structures produced by energetic electron beams from rockets and spacecraft. Geophys. Res. L&r. 12, 175. Banks, P. M., Gilchrist, B. E., Neubert, T., Myers, N., Raitt, W. J., Williamson, P. R., Fraser-Smith, A. C. and Sasaki, S. (1990) CHARGE-2 rocket observations of vehicle charging and charge neutralization. Adu. Space Res. 10, 133. Banks, P. M. and Nagy, A. F. (1970) Concerning the influ- ence of elastic scattering upon phot&lectron transport and escape. J. geophys. Res. 75, 1902.
  8. Banks, P. M. and Raitt, W. J. (1988) Observations of electron beam structure in space experiments. J. geophys. Res. 93, 5811.
  9. Banks, P. M., Raitt, W. J., White, A. B., Bush, R. I. and Williamson, P. R. (1987) Results from the vehicle charging and potential experiment on STS-3. J. Spacecraft Rockets 24,138.
  10. Beard, D. B. and Johnson, F. S. (1961) Ionospheric limi- tations on attainable satellite potential. J. geophys. Res. 66,4113.
  11. Bell, T. F. (1968) Artificial production of VLF hiss. J. geophys. Res. 73,4409.
  12. Bernstein, W., Leinbach, H., Kellogg, P. J., Monson, S. J. and Hallinan, T. (1979) Further laboratory measurements of the beam-plasma discharge. J. geophys. Res. 84,727 1.
  13. Bilitza, D. (1986) International reference ionosphere : recent developments. Radio Sci. 21, 343.
  14. Brenning, N. and Mendillo, M. (Editors) (1990) Active experiments/critical ionization velocity. Adu. Space Res. 10, No. 7.
  15. Burke, W. R. (Editor) (1983) Active experiments in space (Alpach Symposium) European Space Agency Scientific and TechnicaiP&lica&s Sk-195 Noordwijk, Netherlands.
  16. Bush. R. I.. Reeves. G. D.. Banks. P. M.. Neubert. T.. Wil- liamson,'P. R., Raitt, W. J. and Gurnett, D. A. (1987) Electromagnetic fields from pulsed electron beam exper- iments in space: Spacelab-results. Geophys. Res. Lett. 14, 1015.
  17. Cai, D., Neubert, T., Storey, L. R. O., Banks, P. M., Sasaki, S., Abe, K. and Burch, J. L. (1987) ELF oscillations associated with electron beam injections from the space shuttle. J. geophys. Res. 92, 12,451.
  18. Cartwright, D. G. and Kellogg, P. J. (1974) Observations of radiation from an electron beam artificially injected into the ionosphere. J. geophys. Res. 79, 1439.
  19. Cartwright, D. G., Monson, S. J. and Kellogg, P. J. (1978) Heating of the ambient ionosphere by an artificially injected electron beam. J. geophys. Res. 83, 16.
  20. Cooke, D. L. and Katz, I. (1988) Ionization-induced insta- bilitv in an electron-collectinz sheath. J. Spacecraft Rock- ets is, 132.
  21. Denig, W. F., Maynard, N. C., Burke, W. J. and Maehlum, B. M. (1990) Electric field measurements during super- charging events on the MAIMIK rocket experiment. J. geophys. Res. %,3601.
  22. Dietz, L. A. and Sheffield, J. C. (1975) Secondary electron emission induced by 5-30 keV monoatomic ions striking thin oxide films. J. appl. Phys. 464361.
  23. Egeland, A. and Leer, E. (1986) Professor Kr. Birkeland: his life and work. IEEE Trans. Plasma Sci. B-14,666.
  24. Erickson, K. N. and Winckler, J. R. (1990) A study of plasma heating, electric fields and plasma flow near an electron beam-emitting rocket system in the polar ionosphere. J. geophys. Res. (submitted).
  25. Faelthammer, C.-G. (1986) Magnetosphere-ionosphere interactions-nearearth manifestations of the plasma universe. IEEE Trans. Plasma Sci. -14,616.
  26. Farrell. W. M. (1990) Comments on "Pulsed electron beam emission in space", by Neubert et al., 1988. J. Geomagn. Geoelec. 42, 57.
  27. Farrell, W. M., Gumett, D. A., Banks, P. M., Bush, R. I. and Raitt, W. J. (1988) An analysis of whistler mode radiation from the Spacelab-experiment. J. geophys. Res. 93, 153.
  28. Farrell, W. M., Gumett, D. A. and Goertz, C. K. (1989) Coherent Cerenkov radiation from the Spacefab 2 electron beam. J. geophys. Res. 94,443.
  29. Frank, L. A., Paterson, W. R., Ashour-Abdalla, M., Schreiver, D., Kurth, W. S., Gumett, D. A., Gmidi, N., Banks, P. M., Bush, R. I. and Raitt, W. J. (1989) Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere. J. geophys. Res. 94,6995.
  30. Friedrich, M., Torkar, K. M., Troim, J. and Msshlum, B. N. ( 199 1) Plasma observations of the active mother-daughter payload Maimik in the lower thermosphere. Planef. Space Sci. 39,453-468.
  31. Gekelman, W. and Stenzel, R. (1978) Ion sound turbulence in a magnetoplasma. Phys. Fluia!s 21,2014.
  32. Gilchrist, B. E. (1991) Ph. D. thesis, Stanford University.
  33. Gilchrist, B. E., Banks, P. M., Neubert, T., Williamson, P. R., Myers, N. B., Raitt, W. J. and Sasaki, S. (1990) Elec- tron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere. J. geophys. Res. %,2469.
  34. Goerke, R. T., Kellogg, P. J. and Monson, S. J. (1990) An analysis of whistler mode radiation from a 100 mA electron beam. J. geophys. Res. 95,4277.
  35. Grandal. B. (Editor1 (19821 Artiiicialvarticle Beams in Soace Plasma &dies (Geilo Sympbsiumj. Plenum Press, New York.
  36. Gumett, D. A., Kurth, W. S., Steinberg, J. T., Banks, P. M., Bush, R. I. and Raitt, W. L. (1986) Whistler-mode radiation from the Spocelab-2 electron beam. Geophys. Res. L&t. 13,225.
  37. Gumett, D. A., Shawhan, S. D. and Shaw, R. R. (1983) Aurora1 hiss, Z mode radiation, and aurora1 kilometric radiation in the polar magnetosphere : DE 1 observations. J. geophys. Res. 88,329.
  38. Hallinan, T. J., Winckler, J. R., Malcolm, P., Stenbaek- Nielsen, H. C. and Baldridge, J. (1990) Conjugate echoes of artificially injected electron beams detected optically by means of new image processing. J. geophys. Res. 95,6519.
  39. Harker, K. J. and Banks, P. M. (1983) Radiation from pulsed electron beams in space plasmas. Radio Sci. 19,454.
  40. Harker, K. J. and Banks, P. M. (1985) Radiation from long pulse train electron beams in space plasmas. Planef. Space Sci. 33,953.
  41. Harker, K. J. and Banks, P. M. (1987) Near fields in the vicinity of pulsed electron beams in space. Planet. Space Sci. 35, 11.
  42. Harker, K. J., Neubert, T., Banks, P. M., Fraser-Smith, A. C. and Donohue, D. J. (1991) Ground level signal strength of electromagnetic waves generated by puised electron beams in sDace. Planet. Space. Sci. 39, 1527-I 536.
  43. Hastings, D.' E. (1987) Enhanced current flow through a plasma cloud by induction of plasma turbulence. J. geophys. Res. 92.77 16.
  44. Hayden, H. C. and Utterback, N. G. (1964) Ionization of helium, neon, and nitrogen by helium atoms. Phys. Reu. A 135, 1575.
  45. Hedin, A. E. (1987) MSIS-86 thermospheric model. J. mother-daughter rocket MAIMIK. Geophys. Res. Lerr. geophys. Res. 92,4649. 15.725.
  46. Hess, W. N., Trichel, M. C., Davis, T. N., Beggs, W. C., Kraft, G. E., Stassinopoulos, E. and Maier, E. J. R. (1971) Artificial aurora experiment: experiment and principal results. J. geophys. Res. 76,6067.
  47. Holzworth, R. H. and Koons, H. C. (1981) VLF emissions from a modulated electron beam in the aurora1 ionosphere. J. geophys. Res. 86,853.
  48. Hwang, Y. S. and Okuda, H. (1989) Low-frequency elec- trostatic instabilities excited by injections of an electron beam in space. J. geophys. Res. 94,10103.
  49. Inan, U. S., Pon, M., Banks, P. M., Williamson, P. R., Raitt, W. J. and Shawhan, S. D. (1984) Modulated beam injection from the space shuttle during magnetic con- junctions of STS 3 with the DE 1 satellite. Radio Sci. 19, 487. Managadze, G. G., Riedler, W., Balebanov, B. M., Friedrich, M. F., Gagua, T. I., Klos, Z., Laliashvili, N. A., Leonov, N. A., Lyakhov, S. B., Martinson, A. A. and Mayo&, A. D. (1983) Plasma processes in the region of electron beam injection from a high-altitude payload, Acrid Experimenrs in Space (Alpbach Symposium) (Edited by Burke, W. R.). European Space Agency Scienrific and Technical Pub&ario&SP-193.
  50. Noor&vij& Nethe&nds.
  51. Mananadze. G. G.. Riedler. W. K.. Friedrich. M. F.. Bale- Israelson, G. A., and Winckler, J. R. (1979) Effect of a neutral N2 cloud on the electrical charging of an electron beam-emitting rocket in the ionosphere: ECHO IV. J. geophys. Res. 84, 1442. ban&, V: M., L&ishvili,~A. A., konov, N..A., Ly&hov, S. B., Martinson, A. A., Mayorov, A. D., Klos, Z., Zbysxynski, Z. and Torkar, K. M. (1988) Potential obser- vations of an electron emitting rocket payload and other related plasma measurements. Planet. Space Sci. 36,399.
  52. Mandell, M. J., Lilley, J. R., Jr., Katz, I., Neubert, T. and Myers, N. B. (1990) Computer modelling of current col- lection by the CHARGE 2 mother payload. Geophys. Res. L&l. 17, 135.
  53. James, H. G. (1976) VLF saucers. J. geophys. Res. 81, 501. Junginger, H., Geiger, G., Haerendel, G., Meizner, F., Amata, E. and Higel, B. (1984) A statistical study of dayside magnetospheric electric field fluctuations with per- iods between 150 and 600 s. J. geophys. Res. 89,5495.
  54. Kawashima, N. (1982) Experimental studies of the neu- tralization of a charged vehicle in space and in the lab- oratory in Japan, in Ar@cia/ Particle Beams in Space Pkzsma St&es (Edited by Grandal, B.), p. 573. Plenum Press, New York.
  55. Mansfield, V. N. (1967) Radiation from a charged particle spiralling in a cold magnetoplasma. Astrophys. J. 147,672.
  56. Matsumoto, H. and Fukuchi, K. (1985) Computer simulation of particle acceleration and wave excitation by electron beam injection from space shuttle. Geophys. Res. L.err. 12, 61. McKenzie, J. F. (1967) Radiation losses from a test particle in a plasma. Phys. Fluids 10.2680.
  57. Melzner, F.. Metzner, G. and Antrack, D. (1978) The Geos elect& beam experiment S 329. Space Sci. In&m. 4.45.
  58. Katz, I. and Davis, V. A. (1987) On the need for space tests of plasma contactors as electron collectors, paper p-ted at the 2nd Annual Conference on Tethers in Space, PSN/NASA/ESA. Venice, Italy, 4-8 October.
  59. Kellogg, P. J., Monson, S. J., Bernstein, W. and Whalen, B. A. (1986) Observations of waves generated by electron beams in the ionosphere. J. geophys. Res. 91, 12,065.
  60. Kennel, C. F. and Petschek, H. E. (1966) Limit on stably trapped particle fluxes. J. geophys. Res. 71, 1.
  61. Langley, R. A., Bohdansky, J., Fckstein, W., Mioduszewski, he&ert, T:, Williamson; P. R. anb &s&i, S. (i989) A comparison of current-voltage relationships of collectors in the earth's ionosphere with and without electron beam emission. Geophys. Res. L.err. 16,365.
  62. Myers, N. B., ka'ltt, W. J., White, A. B., Banks, P. M., Gilchrist, B. E. and Sasaki, S. (1990) Vehicle charging effects during electron beam emission from the CHARGE 2 experiment. J. Spacecraft Rockets 27,25.
  63. Neubert. T. and Banks. P. M. 11990) Plasma densitv enhancements created by the io&atibn of the Earth'; upper atmosphere by artificial electron beams, AGARD Conference Proceedings, No. 485, pp. 21-1-21-6. Bezgen, Norway.
  64. P., Roth, J., Taglauer,E., Thomas, E. W., Verbeek, H. and Wilson. K. L. (1984) Data comuendium for plasma- surface interactions. N&l. Fusion, S&al Issue 2?, 99.
  65. Langmuir, I. and Blodgett, K. B. (1924) Current limited by space charge flow between concentric spheres. Phys. Rev. 24,49.
  66. Lavergnat, J. and Lehner, T. (1984) Low frequency radiation characteristics of a modulated electron beam immersed in a magnetized plasma. IEEE Trans. AP-32.177.
  67. Lavergnat, J., Lehner, T. and Matthieussent, G. (1984) Coherent spontaneous emission from a modulated beam injected in a magnetized plasma. Phys. Fluti 27, 1632.
  68. Liemohn, H. B. (1%5) Radiation from electrons in a mag- netoplasma. J. Res. natn. Bur. Smnd. D 69,741.
  69. Linson, L. M. (1969) Current-voltage characteristics of an electron emitting satellite in the ionosphere. J. geophys. Res. 742368.
  70. Linson, L. M. (1982) Charge neutralization as studied exper- imentally and theoretically, in Ar@ciai Particle Bea in Space Plasma Studies (Edited by Grandal, B.), p. 573. F'knum Press, New York.
  71. Maehhun, B. M., Troim, J., Maynard, N. C., Denig, W. F., Friedrich, M. and Torkar, K. M. (1988) Studies of the electrical charging of the tethered electron accelerator Neubert, T., Bell, T. F. and Storey, L. R. 0. (1987) Res- onance between coherent whistler mode waves and eleo- trons in the topside ionosphere. J. geophys. Res. 92,255.
  72. Neubert, T. and Harker. K. J. (1988) Magnetic fields in the vicinity of pulsed electron beams in spaa. Planel. Space Sci. 36,469.
  73. Neubert, T., Hawkins, J. G., Reeves, G. D., Banks, P. M., Bush, R. I., Williamson, P. R., Gumett, D. A. and Raitt, W. J. (1988) Pulsed electron beam emission in space. J. Geomagn. Geoekxt. 4Q, 1221.
  74. Neubert, T., Mandell, M. J., Sasaki, S.. Gilchrist, B. E., Banks, P. M., Williamson, P. R., Raitt, W. J., Myers, N. B., Oyama, K. I. and Katz, I. (1990a) The sheath structure around a negatively charged rocket payload. J. geophys. Res. 95.6155.
  75. Neubert, T., Banks, P. M., Gilchrist, B. E., Fraser-Smith, A. C., Williamson, P. R., Raitt, W. J., Myers, N. B. and Sasaki, S. (1990b) The interaction of an artificial electron beam with the earth's upper atmosphere : effects on space- craft charging and the near-plasma environment. J. geophys. Res. 95, 12,209.
  76. Neubert, T., Harker, K. J., Banks, P. M., Reeves, G. D. and Gurnett, D. A. (1990~) Waves generated by pulsed electron beams. Ado. Space Res. 10, 137.
  77. Neubert, T., Sasaki, S., &christ, B. E., Banks, P. M., Wil- liamson. P. R.. Fraser-Smith. A. C. and Raitt. W. J. 119911 Observation of plasma waveturbulence generated around large ionospheric spacecraft : effects of ritotionally induced EMF and of electron beam emission. J. geophys. Res. 96, 9639.
  78. Neubert, T., Taylor, W. W. L., Storey, L. R. 0.. Kawashima, O'Neil, R. R., Shepherd, O., Reid;, W. P., Carpenter, J. W., N., Roberts,~ W. T., Reasoner, -D. -L., Banks, P. M., Gumett, D. A., Williams, R. L. and Burch, J. L. (1986)
  79. Davis. T. N.. Newell. D.. Ulwick. J. C. and Stair. A. T. Waves generated during electron beam emissions from the Jr. (1978b) E&e& 2 &st, an artificial aurora1 experiment : space shuttle. J. geophys. Res. 91, 11.321.
  80. O'NeiI, R. R., Bien, F., Burt, D., Sandock J. A. and Stair, ground-based optical measurements. J, geopkys. Res. 83, A. T. Jr. (1978a) Summarized results of the artificial aur- oral experiment, Precede. J. .qeophys. Res. 83,3273. 3281.
  81. Ohnuki, S. and Ada&i, S. (1984) Radiation of electro- magnetic waves from an electron beam antenna in an ionosphere. Radio Sci. 19,925.
  82. Okuda, H. and Agog-A~alla, M. (1988) ion-acoustic instabilities excited by the injection of an electron beam in space. J. geopkys. Rei. 93,2bll.
  83. Okuda, H. and Ashour-Abdalla, M. (1990) Propagation of a nonrelativistic electron beam in three dimensions. J. geopkys. Res. %,2389.
  84. Okuda. H. and Ashour-Abdalla. M. 119911 Iniection of an over&se electron beam in space.'J. giopiys. Res. M, 21,307.
  85. Omura, Y. and Matsumoto, H. (1988) Computer exper- iments on whistler and plasma wave emissions for the Spacelab-;! electron beam, Geophys. Res. L&t. 15,319.
  86. Parker, L. W. and Mumhv. B. L. (I%71 Potential buifduoon an ei~tron~~tting-~~Ilite inthe ionosphere. 1. geoikys. Res. 74, 1631.
  87. Patterson, M. (1987) Hollow cathode-based plasma con- tactor experiments for electrodvnamic tether. AZAA, AIAA-87-b571.
  88. Peratt, A. L. (1986) Evolution of the plasma universe : I. Double radio galaxies, quasars, and extraaalactic iets. IEEE Trans. Pl&na Sci. &14, b39.
  89. - - Peratt, A. L. (1988) The role of oarticle beams and electrical currents in-the plasma univeise. Laser Particle Beams 6. 471. Peratt, A. L. (19%) The evidence for electrical currents in cosmic plasma. IEEE T3am. Plasma S&i. P&18,26-32.
  90. Pritchett, P. L. (1990) Spatial coherence during pulsed injec- tion of electron beams. J. geophys. Res. 95, 10671.
  91. Pritchett, P. L. (1991) A threedimensional simulation model for electron beam in&ion exneriments in space. J. geopkys. Res. %, 13,781.
  92. Pritchett, P. L., Karamabadi, H. and Omidi, N. (1989) Gen- eration mechanism of whistler waves produced by electron beam injection in space. Geopkys. Res. Lert. 16,883.
  93. Pritchett, P. L. and Win&e. R. M. (1987) The ulasma environment during pa&&e beam i~jectibn into space plasmas, I. Electron beams. J. geopkys. Res. 92,7673.
  94. Reeves, E. 0. D., Banks, P. M., Neubert. T.. Bush. R. I.. WiUi~son, P. R., Fraser-Smith, A. C.: Gumett,. D. A: and Raitt, W. J. (1988a) VLF wave emissions bv oulsed and DC electron' beams in space I : S~acelab-2 bbser- vations. J. geopkys. Res. 93,14,699.
  95. Reeves, G. D., Banks, P. M., Fraser-Smith, A. C., Neubert, T., Bush, R. I., Gumett, D. A. and Raitt, W. J. (1988b) VLF wave stimulation by pulsed electron beams injected from the space shuttle. J. geopkys. Res. 93, 162.
  96. Reeves, G. D., Banks, P. M., Neubert, T., Harker, K. J. and Gumett, D. A. (1990a) VLF wave emissions by pulsed and DC electron beams in space 2 : analysis of Spacelab 2 results. J. geopkys. Res. %,6505.
  97. Reeves, G. D., Banks, P. M., Neubert, T., Harker, K. J., Gumett, D. A. and Raitt W. J. (199Ob) Spacelab-electron beam wave stimulation : studies of important parameters. J. geopkys. Res. 95, 10,655.
  98. Reme, H. (Editor) (1980) Special issue on the results of the active French-Soviet Araks experiments. Ann. Geophys. 36, 3. Kyakov, S. B., Mart&n, A. A., Romanovsky, Yu. A., Adeiskvilv. T. G.. Leonov. N. A. and Gaaua. T. I. (1981) Peculiar&s of the environment disturb&& during the electron beam injection from the rocket. Ado. Spuce Res. 1,77.
  99. Sagdeev, R. Z., Managadxe, G. G., Mayorov, A. D., Sasaki, S., Kawashima, N., Kuriki. K., Yanagisawa, M., Obayashi, T., Roberts, W. T., Reasoner, D. L., Taylor, W. W. L., Williamson, P. R., Banks, P. M. and Butch, J. L. (1985a) Ignition of beam plasma discharge in the electron beam experiment in space. Geophys. Res. L&t. 12,641.
  100. Sasaki, S.,-Kawashimai N., Ku&M, K., Yanagisawa, M., Obavashi. T.. Roberts. W. T.. Reasoner. D. L.. Tavlor. W. W. L.; Wilhamson,'P. R., Banks, P. M. and B&h, J: L. (1985b) An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelabl experiment. J. Geomaqn. Geoelec. 37,883.
  101. Sasaki, S., byama, K. I., Kawashima, N., Watanabe, Y., Obavashi. T.. Raitt. W. J.. White. A. B.. Banks. P. M..
  102. Will~amsdn, P. R., Sharp, W. F., Yokota; T. a& Hirao;
  103. K. (1987) Results from a series of tethered rocket exper- iments. J. Spacecraft Rockets 24,444.
  104. Sasaki, S., Oyama, K. I., Kaw~~~, N.. Obayashi, T..
  105. Hirao, K., Raitt, W. J., Myers, N. B., Williamson, P. R., Banks, P. M. and Sharp, W. F. (1988) Tethered rocket experiment (CHARGE 2) : initial rem&s on elec- trodynamics. Radio Sci. 23,975.
  106. Shawhan, S. D., Murphy, G. B., Banks, P. M., Williamson, P. R. and Raitt. Hr. J. (19841 Wave emissions from dc and modulated electron beams on STS-3. Radio Sci. 19,471.
  107. Stenxel, R. L. (1978a) Experiments on currentdriven three- dimensional ion sound turbulence. Part I : return-current limited electron beam injection. Pkys. FIti& 21,93.
  108. Stenzel, R. L. (1978b) Experiments on currentdriven three- dimensional ion sound turbulence. Part 2 : wave dynamics. Phys. Fkd& 21,99.
  109. Stix, T. H. (1962) Tire Theory of Plasma Waws. McGraw- Hill, New York.
  110. Sxapiro, B. and Rocca, J. J. (1989) Electron emission from glow-discharge cathode materials due to neon and argon bombardment. J. appl. Pkys. 65,3713.
  111. Sxapiro, B., Rocca, J. J. and Prabhuram, T. (1988) Electron yield of glow discharge cathode material under helium ion bombardment. Appl. Pkys. L&t. 53,358.
  112. Taylor, W. W. L., Roberts, W. T., Reasoner, D. L., Chappell, C. R., Watkins, J. R., Baker, 8. B., Burch, J. L., Gibson, W. C., Black, R. K., Tom&son, W. M., Ferguson, G. A., Bounds, J. R., Womack, W. M., Banks, P. M., Williamson, P. R., Neubert, T., Wilhamson, W. S., Obayashi, T., Naga- moto, M., Kawashima, N., Kuriki, K., Ninomayo, K., Sasaki, S., Yanagisawa, M., Ejiri, M. and Kudo, I. (1991) Electron beam Space experiments with particle accelerators. J. Spacecraft Rockets (in press).
  113. Taylor, W. W. L. and Shawhan, S. D. (1974) A test of incoherent Cerenkov radiition for VLF hiss and other magnetospheric emissions. J. geopkys. Res. 79, 105.
  114. Utterback, N. G. and Miller, G. H. (1961) Fast molecular nitrogen beam. Rev. Sci. Instrum. 32,1101.
  115. Waterman, J., Wilhelm, K., Torkar, K. M. and Riedler, W. (1988) Space shuttle charging or beam-plasma discharge : What an electron spectrometer observations contribute to solving the question7 J. geophys. Res. 93,4134.
  116. Wilhelm, K., Stuedmann, W. and Riedler, W. (1984) Elec- tron flux intensity distributions observed in response to particle beam emissions. Science 225, 186.
  117. Williams, J. D., Wilbur, P. J. and Monheiser, J. M. (1987) Experimental validation of a phenomenological model of the plasma contacting process, paper presented at the 2nd Annual Conference on Tethers in Space, PSN/ NASA/ESA, Venice, Italy, October 4-8.
  118. Winckler, J. R. (1980) The application of artificial electron beams to magnetospheric research. Rev. Geophys. Space Pkys. 18, 649.
  119. Winckler, J. R., Amoldy, R. L. and Hendrickson, R. A. (1975) Echo 2 : a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket. J. geophys. Res. SO, 2083.
  120. Winckler, J. R., Erickson, K. N., Abe, Y., Steffen, J. E. and Malcolm, P. R. (1985) ELF wave production by an phenomena 183 electron beam emitting rocket system and its suppression on auroral field lines : evidence for Al&en and drift waves. Geophys. Res. Len. 12,457.
  121. Wincklcr, J. R., Malcolm, P. R., Amoldy, R. L., Burke, W. J., Erickson, K. N., Emstmeyer, J., Franz, R. C.,Hallinan, T. J., Kellogg, P. J., Monson. S. J., Lynch, K. A., Murphy, G. and Nemxek, R. J. (1989) Echo 7: an electron beam experiment in the magnetosphere. EOS 70.657.
  122. Winckler, J. R., Steffen. J. E., Malcolm, P. R. Erickson, K. N., Abe, Y. and Swanson, R. L. (1984) Ion resonances and ELF wave production by an electron beam emitting rocket in the ionosphere: ECHO 6. J. geophys. Res. 89, 7565.
  123. Winglee, R. M. (1990) Electron beam injection during active experiments: 2. Collisional effects. J. geophys. Res. 95, 6191.
  124. Winglee, R. M. and Kellogg, P. J. (1990) Eleotron beam injection during active Experiments: I. Electromagnetic wave emissions. J. geophys. Res. 95,6167.
  125. Winglee, R. M. and Pritchett, P. L. (1988) Comparative study of cross-field and field-aligned electron beams in active experiments. J. geophys. Res. 93,5823.
  126. Wong, H. K. and Lin, C. S. (1990) Plasma instabilities of a finite-radius beam in a uniform plasma. Radio Sci. 25,277.
  127. Yeh, K. C. (Editor) Radio Science (1984) Special issue on emissions from particle beams in space 19, 453. (Guest Editor E. R. Schmerling).