Radiation properties of an integrated optical leaky wave antenna with periodic silicon perturbations (original) (raw)
2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation
We propose a highly directive optical leaky wave antenna (OLWA) radiating at 1550 nm composed of a dielectric waveguide comprising periodic silicon (Si) perturbations. The antenna working principle is based on the excitation of a leaky wave guided mode in the perturbed waveguide. Here we study the radiation properties for two sets of perturbation dimensions, and show beam scanning capabilities of the antenna (radiation level and direction) at broadside by varying the free space wavelength. Moreover, the use of Si offers the electronic/optical tunability of its complex refractive index by excess electron-hole carrier density generation via current injection (electronic control) or optical absorption (optical control). Therefore, by changing the Si refractive index we vary the leaky wave attenuation constant and the input impedance of the antenna, which in turn allow for beam control capabilities. I.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.