Observed binary populations reflect the Galactic history. Explaining the orbital period-mass ratio relation in wide hot subdwarf binaries (original) (raw)

The binary companion mass ratio distribution: an imprint of the star formation process?

Monthly Notices of the Royal Astronomical Society, 2013

We explore the effects of dynamical evolution in dense clusters on the companion mass ratio distribution (CMRD) of binary stars. Binary systems are destroyed by interactions with other stars in the cluster, lowering the total binary fraction and significantly altering the initial semi-major axis distribution. However, the shape of the CMRD is unaffected by dynamics; an equal number of systems with high mass ratios are destroyed compared to systems with low mass ratios. We might expect a weak dependence of the survivability of a binary on its mass ratio because its binding energy is proportional to both the primary and secondary mass components of the system. However, binaries are broken up by interactions in which the perturbing star has a significantly higher energy (by a factor of 10, depending on the particular binary properties) than the binding energy of the binary, or through multiple interactions in the cluster. We therefore suggest that the shape of the observed binary CMRD is an outcome of the star formation process, and should be measured in preference to the distributions of orbital parameters, such as the semi-major axis distribution.

Statistical Modeling and Analysis of Wide Binary Star Systems

Proceedings of the International Astronomical Union, 2006

Post-main-sequence (MS) mass loss causes orbital separation amplification in fragile (i.e. common proper motion) binary star systems. Components typically have separations around ∼1000 AU. Such wide pairs experience negligible tidal interactions and mass transfer between companions; thus they evolve as two separate but coeval stars. In this paper we compute the rate of mass loss during the components' lifetimes and attempt to model how it will statistically distort a frequency distribution of fragile binary separations. Understanding this process provides a robust test of current theories of stellar evolution and sets constraints on the dynamics of the Galactic disk.

Volume-limited sample of low-mass red giant stars, the progenitors of hot subdwarf stars

Astronomy & Astrophysics

Context. Current theory predicts that hot subdwarf binaries are produced from evolved low-mass binaries that have undergone mass transfer and drastic mass loss during either a common-envelope phase or a stable Roche-lobe overflow while on the red giant branch (RGB). Aims. We perform a spectroscopic survey to find binary systems that include low-mass red giants near the tip of the RGB, which are predicted to be the direct progenitors of subdwarf B (sdB) stars. We aim to obtain a homogeneous sample to search for the observational evidence of correlations between the key parameters governing the formation of sdB stars and constrain the physics of stable mass transfer. Methods. Based on data from the Gaia mission and several ground-based, multiband photometry surveys, we compiled a sample of low-mass red giant branch (RGB) candidates. The candidates were selected according to their Gaia data release 2 (DR2) color, absolute magnitude, and proper motion cuts. In this work, we concentrated...

Transition of the stellar initial mass function explored using binary population synthesis

Monthly Notices of the Royal Astronomical Society: Letters, 2013

The stellar initial mass function (IMF) plays a crucial role in determining the number of surviving stars in galaxies, the chemical composition of the interstellar medium, and the distribution of light in galaxies. A key unsolved question is whether the IMF is universal in time and space. Here we use state-of-the-art results of stellar evolution to show that the IMF of our Galaxy made a transition from an IMF dominated by massive stars to the present-day IMF at an early phase of the Galaxy formation. Updated results from stellar evolution in a wide range of metallicities have been implemented in a binary population synthesis code, and compared with the observations of carbon-enhanced metal-poor (CEMP) stars in our Galaxy. We find that applying the present-day IMF to Galactic halo stars causes serious contradictions with four observable quantities connected with the evolution of AGB stars. Furthermore, a comparison between our calculations and the observations of CEMP stars may help us to constrain the transition metallicity for the IMF which we tentatively set at [Fe/H] ≈ −2. A novelty of the current study is the inclusion of mass loss suppression in intermediate-mass AGB stars at low-metallicity. This significantly reduces the overproduction of nitrogen-enhanced stars that was a major problem in using the high-mass star dominated IMF in previous studies. Our results also demonstrate that the use of the present day IMF for all time in chemical evolution models results in the overproduction of Type I.5 supernovae. More data on stellar abundances will help to understand how the IMF has changed and what caused such a transition.

THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

The Astrophysical Journal, 2012

We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main sequence star and a white dwarf. The temperature and gravity of each white dwarf was measured by fitting theoretical model atmospheres to the observed spectrum using a χ 2 fitting algorithm. The cooling time and mass was obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main sequence component to an uncertainty of about 0.17 dex in log t The difference between the total age and white dwarf cooling time is taken as the main sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 -2 M ⊙ . Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences -at least among progenitors with masses in the range of 1 -2 M ⊙ . A comparison of our observations to theoretical models suggests that low mass stars preferentially lose mass on the red giant branch.

Transition of the Stellar Initial Mass Function Explored with Binary Population Synthesis

2016

The stellar initial mass function (IMF) plays a crucial role in determining the number of surviving stars in galaxies, the chemical composition of the interstellar medium, and the distribution of light in galaxies. A key unsolved question is whether the IMF is universal in time and space. Here we use state-of-the-art results of stellar evolution to show that the IMF of our Galaxy made a transition from an IMF dominated by massive stars to the present-day IMF at an early phase of the Galaxy formation. Updated results from stellar evolution in a wide range of metallicities have been implemented in a binary population synthesis code, and compared with the observations of carbon-enhanced metal-poor (CEMP) stars in our Galaxy. We find that applying the present-day IMF to Galactic halo stars causes serious contradictions with four observable quantities connected with the evolution of AGB stars. Furthermore, a comparison between our calculations and the observations of CEMP stars may help us to constrain the transition metallicity for the IMF which we tentatively set at [Fe/H] ≈ −2. A novelty of the current study is the inclusion of mass loss suppression in intermediate-mass AGB stars at low-metallicity. This significantly reduces the overproduction of nitrogen-enhanced stars that was a major problem in using the high-mass star dominated IMF in previous studies. Our results also demonstrate that the use of the present day IMF for all time in chemical evolution models results in the overproduction of Type I.5 supernovae. More data on stellar abundances will help to understand how the IMF has changed and what caused such a transition.

Modelling the components of binaries in the Hyades: the dependence of the mixing-length parameter on stellar mass

Monthly Notices of the Royal Astronomical Society, 2006

We present our findings based on a detailed analysis for the binaries of the Hyades, in which the masses of the components are well known. We fit the models of components of a binary system to the observations so as to give the observed total V and B − V of that system and the observed slope of the main-sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as α = 9.19(M/M ⊙ − 0.74) 0.053 − 6.65, which is valid for stellar masses greater than 0.77M ⊙. While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour-magnitude diagram, by adopting Z = 0.033 and using models for the components of 70 Tau and θ 2 Tau we find the hydrogen abundance to be X = 0.676 and the age to be 670 Myr. If we assume that Z = 0.024, then X = 0.718 and the age is 720 Myr. Our findings concerning the mixing length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with Z = 0.024 and the observed radii are only about 4 percent. More generally, the effective temperatures of the models of low mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.

Empirical tests of pre-main-sequence stellar evolution models with eclipsing binaries

New Astronomy Reviews, 2014

We examine the performance of standard pre-main-sequence (PMS) stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 eclipsing binary (EB) systems having masses 0.04-4.0 M ⊙ and nominal ages ≈1-20 Myr. We provide a definitive compilation of all fundamental properties for the EBs, with a careful and consistent reassessment of observational uncertainties. We also provide a definitive compilation of the various PMS model sets, including physical ingredients and limits of applicability. No set of model isochrones is able to successfully reproduce all of the measured properties of all of the EBs. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% at 1 M ⊙ , but below 1 M ⊙ they are discrepant by 50-100%. Adjusting the observed radii and temperatures using empirical relations for the effects of magnetic activity helps to resolve the discrepancies in a few cases, but fails as a general solution. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ∼10% in the H-R diagram, down to 0.5 M ⊙ , below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The EBs that are members of young clusters appear individually coeval to within 20%, but collectively show an apparent age spread of ∼50%, suggesting true age spreads in young clusters. However, this apparent spread in the EB ages may also be the result of scatter in the EB properties induced by tertiaries.

The Evolution of Compact Binary Star Systems

Living Reviews in Relativity, 2006

We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

Disentangling discrepancies between stellar evolution theory and sub-solar mass stars

Astronomy and Astrophysics, 2003

Serious discrepancies have recently been observed between predictions of stellar evolution models in the 0.7-1.1 M⊙ mass range and accurately measured properties of binary stars with components in this mass range. We study one of these objects, the eclipsing binary UV Piscium, which is particularly interesting because Popper (1997) derived age estimates for each component which differed by more than a factor of two. In an attempt to solve this significant discrepancy (a difference in age of 11 Gyr), we compute a large grid of stellar evolution models with the CESAM code for each component. By fixing the masses to their accurately determined values (relative error smaller than 1% for both stars), we consider a wide range of possible metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34) uncorrelated to Z. In addition, the mixing length parameter αMLT is left as another free parameter. We obtain a best fit in the T eff -radius diagram for a common chemical composition (Z, Y )=(0.012, 0.31), but a different MLT parameter αMLT,A= 0.95±0.12(statistical)+0.30(systematic) and αMLT,B= 0.65±0.07(stat)+0.10(syst). The apparent age discrepancy found by Popper (1997) disappears with this solution, the components being coeval to within 1%. This suggests that fixing αMLT to its solar value (∼1.6), a common hypothesis assumed in most stellar evolutionary models, may not be correct. Secondly, since αMLT is smaller for the less massive component, this suggests that the αMLT parameter may decrease with stellar mass, showing yet another shortcoming of the mixing length theory to explain stellar convection. This trend needs further confirmation with other binary stars with accurate data.