Novel Nucleoside Analogues as Effective Antiviral Agents for Zika Virus Infections (original) (raw)
Related papers
Activity of Selected Nucleoside Analogue ProTides against Zika Virus in Human Neural Stem Cells
Zika virus (ZIKV), an emerging flavivirus which causes neurodevelopmental impairment to fetuses and has been linked to Guillain-Barré syndrome, continues to threaten global health due to the absence of targeted prophylaxis or treatment. Nucleoside analogues are good examples of efficient anti-viral inhibitors, and prodrug strategies using phosphate masking groups (ProTides) have been employed to improve the bioavailability of ribonucleoside analogues. Here, we synthesized and tested a library of 13 ProTides against ZIKV in human neural stem cells. Strong activity was observed for 2'-C-methyluridine and 2'-C-ethynyluridine ProTides with an aryloxyl phosphoramidate masking group. Conversion of the aryloxyl phosphoramidate ProTide group of 2'-C-methyluridine to a 2-(methylthio)ethyl phosphoramidate completely abolished antiviral activity of the compound. The aryloxyl phosphoramidate ProTide of 2'-C-methyluridine outperformed the hepatitis C virus (HCV) drug sofosbuvir i...
Pharmaceuticals
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These resu...
Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update
Expert Opin Investig Drugs, 2018
The Zika virus (ZIKV) infection results in severe neurological complications and has emerged as a threat to public health worldwide. No drugs or vaccines are available for use in the clinic and the need for novel and effective therapeutic agents is urgent. Areas covered: This review describes the latest progress of antiviral development for the treatment of ZIKV infection; it primarily focuses on the literature describing 20 potential anti-ZIKV drugs/agents currently being tested in vivo or in clinical trials. The paper also discusses the need for novel ZIKV inhibitors and the critical issues for successful antiviral drug development. Expert opinion: So far, 20 compounds have been tested in vivo and three in the clinical trials; progressing these compounds to the clinic is a challenge. Novel ZIKV inhibitors that target virus or host factors are urgently needed. Knowledge-driven drug repurposing, structure-based discovery, RNA interference, long noncoding RNAs, miRNAs, and peptide inhibitors may pave the way for the discovery of such novel agents.
Searching Anti-Zika Virus Activity in 1H-1,2,3-Triazole Based Compounds
Molecules
Zika virus (ZIKV) is a mosquito-borne virus belonging to the Flaviviridae family and is responsible for an exanthematous disease and severe neurological manifestations, such as microcephaly and Guillain-Barré syndrome. ZIKV has a single strand positive-sense RNA genome that is translated into structural and non-structural (NS) proteins. Although it has become endemic in most parts of the tropical world, Zika still does not have a specific treatment. Thus, in this work we evaluate the cytotoxicity and antiviral activities of 14 hybrid compounds formed by 1H-1,2,3-triazole, naphthoquinone and phthalimide groups. Most compounds showed low cytotoxicity to epithelial cells, specially the 3b compound. After screening with all compounds, 4b was the most active against ZIKV in the post-infection test, obtaining a 50% inhibition concentration (IC50) of 146.0 µM and SI of 2.3. There were no significant results for the pre-treatment test. According to the molecular docking compound, 4b was sug...
Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase
Antiviral Research, 2017
We describe the expression and purification of an active recombinant Zika virus RNA-dependent RNA polymerase (RdRp). Next, we present the development and optimization of an in vitro assay to measure its activity. We then applied the assay to selected triphosphate analogs and discovered that 2 0-Cmethylated nucleosides exhibit strong inhibitory activity. Surprisingly, also carbocyclic derivatives with the carbohydrate locked in a North-like conformation as well as a ribonucleotide with a South conformation exhibited strong activity. Our results suggest that the traditional 2 0-Cemethylated nucleosides pursued in the race for anti-HCV treatment can be superseded by brand new scaffolds in the case of the Zika virus.
Antimicrobial Agents and Chemotherapy
Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world’s population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2′-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed ...
Proceedings of the National Academy of Sciences of the United States of America, 2020
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure–activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase–activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.
ACS Medicinal Chemistry Letters
Zika virus (ZIKV) infection, which initially was endemic only in Africa and Asia, is rapidly spreading throughout Europe, Oceania, and the Americas. Although there have been enormous efforts, there is still no approved drug to treat ZIKV infection. Herein, we report the synthesis and biological evaluation of agents with noncompetitive mechanism of the ZIKV NS2B/ NS3 protease inhibition through the binding to an allosteric site. Compounds 1 and 2 showed potent activity in both enzymatic and cellular assays. Derivative 1 efficiently reduced the ZIKV protein synthesis and the RNA replication and prevented the mice from life-threatening infection and the brain damage caused by ZIKV infection in a ZIKV mouse model.
2019
The recent outbreaks of Zika virus (ZIKV) infection worldwide make the discovery of novel antivirals against flaviviruses a research priority. This work describes the identification of novel inhibitors of ZIKV through a structure‐based virtual screening approach using the ZIKV NS5‐MTase. A novel series of molecules with a carbazoyl‐aryl‐urea structure has been discovered and a library of analogues has been synthesized. The new compounds inhibit ZIKV MTase with IC50 between 23–48 μM. In addition, carbazoyl‐aryl‐ureas also proved to inhibit ZIKV replication activity at micromolar concentration.
Zika Virus Targeting by Screening Inhibitors against NS2B/NS3 Protease
BioMed Research International
Zika flavivirus is suspected to cause Guillain-Barre syndrome in adults and microcephaly, along with other congenital abnormalities in infants. Presently, no vaccines or therapeutics are available. Here, we report novel compounds identified by high-throughput virtual screening of Maybridge chemical database and molecular docking studies. We selected viral enzyme NS2B/NS3 serine protease as the therapeutic target because of its important role in viral replication. We selected seven potential compounds as antiviral drug candidates because of their high GOLD fitness score, high AutoDock Vina score, or X-Score binding energy and analyzed the strength of molecular interactions between the active site amino acids and selected compounds. Our study also provides a foundation for similar studies for the search of novel therapeutics against Zika virus.