Thermal characterization of tetrabasic lead sulfate used in the lead acid battery technology (original) (raw)

Solid State Sciences, 2017

Abstract

Abstract The thermal production of 4PbO·PbSO4 was comprehensively studied and characterized for two syntheses routes, i.e. either heating 3PbO·PbSO4·H2O, or a mixture of 4PbO:PbSO4, in air to about 700 °C. In the 3PbO·PbSO4·H2O approach, the formation of an intermediate amorphous phase occurred at around 210 °C with the loss of H2O from the hydrated structure. Formation of 4PbO·PbSO4 initiated at around 270 °C with predominantly 4PbO·PbSO4 and 13% residual PbO·PbSO4 existing at 700 °C. With the synthesis route of mixing a stoichiometric ratio of 4PbO with PbSO4, an intermediate phase of PbO·PbSO4 formed at around 300 °C, before the 4PbO·PbSO4 phase started to form at around 500 °C. Upon further heating, 4PbO·PbSO4 was the predominant phase with 8% of PbO·PbSO4 remaining. Both samples decomposed upon further heating to 850 °C. Powder neutron diffraction studies of the final 4PbO·PbSO4 products from the two different synthesis routes showed similar crystallographic unit cell lattice parameters with slight differences in the PbO:PbSO4 contents. This could possibly be linked to differences observed in the microscopic crystallite shapes from the two synthesis routes.

Andrew Venter hasn't uploaded this paper.

Let Andrew know you want this paper to be uploaded.

Ask for this paper to be uploaded.