IFN-γ Plays a Unique Role in Protection against Low Virulent Trypanosoma cruzi Strain (original) (raw)
Related papers
International journal of biological sciences, 2011
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokin...
Parasitology, 2005
Immunopathology of Chagas' disease in Balb/c mice infected with 2 Trypanosoma cruzi clones, belonging to the T. cruzi I lineage and presenting different in vitro virulence (P/209 cl1>SO34 cl4) was compared. In the acute phase, evading mechanisms such as parasite-induced lymphocyte polyclonal activation and T cell immunosuppression were higher in mice infected with the clone giving a higher parasitaemia (P/209 cl1). A similar increase of non-specific isotypes was observed in both infections with IgG2a prevalence. Interestingly, CD8+ cell hypercellularity and lymphocyte immunosuppression were observed during the chronic phase (245 days post-infection) in mice infected by the most virulent clone. In the same way, the parasite-specific antibody response was more intense in P/209 cl1-infected mice over the acute phase. During the chronic phase this response remarkably dropped down in SO34 cl4-infected mice exclusively. Finally, P/209 cl1-infected mice presented a more severe inflammation and tissue damage in heart and quadriceps than SO34 cl4-infected mice. This comparative study showed differences between the two clones : a higher virulence in vivo being clearly associated with a greater ability to induce evasion mechanisms and severe tissue damage.
International Journal of Biological Sciences, 2011
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells.
Infection and Immunity, 2002
Immunity to Trypanosoma cruzi requires elicitation of humoral and cell-mediated immune responses to extracellular trypomastigotes and intracellular amastigotes. In this study, the effectiveness of the T. cruzi trans-sialidase family (ts) genes ASP-1 , ASP-2 , and TSA-1 as genetic vaccines was assessed. Immunization of mice with plasmids encoding ASP-1 , ASP-2 , or TSA-1 elicited poor antigen-specific cytotoxic-T-lymphocyte (CTL) activity and T. cruzi -specific antibody responses. Codelivery of interleukin-12 and granulocyte-macrophage colony-stimulating factor plasmids with antigen-encoding plasmids resulted in a substantial increase in CTL activity and antibody production and in increased resistance to T. cruzi infection. In pooled results from two to four experiments, 30 to 60% of mice immunized with antigen-encoding plasmids and 60 to 80% of mice immunized with antigen-encoding plasmids plus cytokine adjuvants survived a lethal challenge with T. cruzi . In comparison, 90% of cont...
Cytokines in innate and acquired immunity to Trypanosoma cruzi infection
Brazilian Journal of Medical and Biological Research, 1998
Resistance to Trypanosoma cruzi infections is critically dependent on cytokine-mediated activation of cell-mediated immune effector mechanisms. This review focuses on the role of IL-10, TNF-α, IFN-γ and IL-12 in controlling T. cruzi replication by the innate and specific immune systems of the vertebrate host. A study performed on mice with disrupted recombinase-activating genes (RAG/KO), which lack T and B lymphocytes, revealed the importance of IL-12, IFN-γ and TNF-α in the resistance against T. cruzi mediated by the innate immune system. In addition, data from experiments using IL-10 KO, RAG/KO and double RAG/IL-10 KO mice indicating an in vivo regulatory role of IL-10 in innate and T. cruzi-specific immunity are discussed.
PLOS Neglected Tropical Diseases, 2010
A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-a, CCL2, IL-6 and IFN-c) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3 + and CD4 + T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice.
Trypanosoma cruziInfection: Mechanisms of Evasion of Immune Response
Biology ofTrypanosoma cruzi, 2019
Trypanosoma cruzi has a complex life cycle that involves a vertebrate as well as an invertebrate host. In this, last two stages are present: trypomastigotes, the flagellated and infective stage and the amastigote, which is the replicative stage. T. cruzi is considered one of the most successful intracellular parasites, because it cannot be eliminated by the immune system and has the capacity of invading, surviving, and replicating inside the host cells. The effects that the infection has over the immune system have been widely studied at the molecular and cellular level. However, understanding the mechanisms that the parasite uses to evade the immune system to persist in the infected individual is necessary for the effective development of drugs and/or vaccines. In this chapter, a compilation of the already described mechanisms will be carried out.
Vaccine, 2009
Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8+ T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2Kk-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.