Routing algorithms as tools for integrating social distancing with emergency evacuation (original) (raw)

Measuring Dynamics in Evacuation Behaviour with Deep Learning

Entropy, 2022

Bounded rationality is one crucial component in human behaviours. It plays a key role in the typical collective behaviour of evacuation, in which heterogeneous information can lead to deviations from optimal choices. In this study, we propose a framework of deep learning to extract a key dynamical parameter that drives crowd evacuation behaviour in a cellular automaton (CA) model. On simulation data sets of a replica dynamic CA model, trained deep convolution neural networks (CNNs) can accurately predict dynamics from multiple frames of images. The dynamical parameter could be regarded as a factor describing the optimality of path-choosing decisions in evacuation behaviour. In addition, it should be noted that the performance of this method is robust to incomplete images, in which the information loss caused by cutting images does not hinder the feasibility of the method. Moreover, this framework provides us with a platform to quantitatively measure the optimal strategy in evacuatio...

Measuring the rationality in evacuation behavior with deep learning

2021

The bounded rationality is a crucial component in human behaviors. It plays a key role in the typical collective behavior of evacuation, in which the heterogeneous information leads to the deviation of rational choices. In this study, we propose a deep learning framework to extract the quantitative deviation which emerges in a cellular automaton(CA) model describing the evacuation. The well-trained deep convolutional neural networks(CNNs) accurately predict the rational factors from multi-frame images generated by the CA model. In addition, it should be noted that the performance of this machine is robust to the incomplete images corresponding to global information loss. Moreover, this framework provides us with a playground in which the rationality is measured in evacuation and the scheme could also be generalized to other well-designed virtual experiments.

Emotio-Intelligent: A New Adaptive Approach for Intelligent Evacuation in Crisis Situations

Research Square (Research Square), 2024

Addressing the critical challenge of evacuation, especially in crisis situations where uncontrollable emotions can significantly impact decision-making, is of paramount importance. In this article, the Emotional Intelligent Model is presented, a new approach that seamlessly integrates dynamic emotion recognition with an adapted intelligent evacuation strategy for crisis scenarios. Our methodology harnesses a combination of convolutional neural networks (CNN) for dynamic emotion sensing and long-term memory recurrent neural networks (LSTM) to provide decision support during evacuation. This paper provides an in-depth exploration of our system's architecture, encompassing the dynamic emotion recognition and personality profiling methods, as well as the adaptive evacuation strategy. During the experimental and validation phases, the MESA simulation platform was used. The results achieved confirm the effectiveness of the integrated emotional approach, which contributes to safer and smarter evacuation procedures in crisis situations.

Simulating multi‐exit evacuation using deep reinforcement learning

Transactions in GIS

Conventional simulations on multi-exit indoor evacuation focus primarily on how to determine a reasonable exit based on numerous factors in a changing environment. Results commonly include some congested and other under-utilized exits, especially with massive pedestrians. We propose a multi-exit evacuation simulation based on Deep Reinforcement Learning (DRL), referred to as the MultiExit-DRL, which involves in a Deep Neural Network (DNN) framework to facilitate state-to-action mapping. The DNN framework applies Rainbow Deep Q-Network (DQN), a DRL algorithm that integrates several advanced DQN methods, to improve data utilization and algorithm stability, and further divides the action space into eight isometric directions for possible pedestrian choices. We compare MultiExit-DRL with two conventional multi-exit evacuation simulation models in three separate scenarios: 1) varying pedestrian distribution ratios, 2) varying exit width ratios, and 3) varying open schedules for an exit. The results show that MultiExit-DRL presents great learning efficiency while reducing the total number of evacuation frames in all designed experiments. In addition, the integration of DRL allows pedestrians to explore other potential exits and helps determine optimal directions, leading to a high efficiency of exit utilization.

Deep Reinforcement Learning for UAV-Assisted Emergency Response

MobiQuitous 2020 - 17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2020

In the aftermath of a disaster, the ability to reliably communicate and coordinate emergency response could make a meaningful difference in the number of lives saved or lost. However, post-disaster areas tend to have limited functioning communication network infrastructure while emergency response teams are carrying increasingly more devices, such as sensors and video transmitting equipment, which can be low-powered with limited transmission ranges. In such scenarios, unmanned aerial vehicles (UAVs) can be used as relays to connect these devices with each other. Since first responders are likely to be constantly mobile, the problem of where these UAVs are placed and how they move in response to the changing environment could have a large effect on the number of connections this UAV relay network is able to maintain. In this work, we propose DroneDR, a reinforcement learning framework for UAV positioning that uses information about connectivity requirements and user node positions to decide how to move each UAV in the network while maintaining connectivity between UAVs. The proposed approach is shown to outperform other greedy heuristics across a broad range of scenarios and demonstrates the potential in using reinforcement learning techniques to aid communication during disaster relief operations. CCS CONCEPTS • Networks → Wireless access points, base stations and infrastructure; • Computing methodologies → Reinforcement learning.

Experiences with evacuation route planning algorithms

2012

Efficient tools are needed to identify routes and schedules to evacuate affected populations to safety in the event of natural disasters. Hurricane Rita and the recent tsunami revealed limitations of traditional approaches to provide emergency preparedness for evacuees and to predict the effects of evacuation route planning (ERP). Challenges arise during evacuations due to the spread of people over space and time and the multiple paths that can be taken to reach them; key assumptions such as stationary ranking of alternative routes and optimal substructure are violated in such situations. Algorithms for ERP were first developed by researchers in operations research and transportation science. However, these proved to have high computational complexity and did not scale well to large problems. Over the last decade, we developed a different approach, namely the Capacity Constrained Route Planner (CCRP), which generalizes shortest path algorithms by honoring capacity constraints and the spread of people over space and time. The CCRP uses time-aggregated graphs to reduce storage overhead and increase computational efficiency. Experimental evaluation and field use in Twin Cities Homeland Security scenarios demonstrated that CCRP is faster, more scalable, and easier to use than previous techniques. We also propose a novel scalable algorithm that exploits the spatial structure of transportation networks to accelerate routing algorithms for large network datasets. We evaluated our new approach for large-scale networks around downtown Minneapolis and riverside areas. This article summarizes experiences and lessons learned during the last decade in ERP and relates these to Professor Goodchild's contributions.

A Deep Learning Approach for Network-wide Dynamic Traffic Prediction during Hurricane Evacuation

2022

Proactive evacuation traffic management largely depends on real-time monitoring and prediction of traffic flow at a high spatiotemporal resolution. However, evacuation traffic prediction is challenging due to the uncertainties caused by sudden changes in projected hurricane paths and consequently household evacuation behavior. Moreover, modeling spatiotemporal traffic flow patterns requires extensive data over a longer time period, whereas evacuations typically last for 2 to 5 days. In this paper, we present a novel data-driven approach for predicting evacuation traffic at a network scale. We develop a dynamic graph convolution LSTM (DGCN-LSTM) model to learn the network dynamics of hurricane evacuation. We first train the model for non-evacuation period traffic data showing that the model outperforms existing deep learning models for predicting non-evacuation period traffic with an RMSE value of 226.84. However, when we apply the model for evacuation period, the RMSE value increased to 1440.99. We overcome this issue by adopting a transfer learning approach with additional features related to evacuation traffic demand such as distance from the evacuation zone, time to landfall, and other zonal level features to control the transfer of information (network dynamics) from non-evacuation periods to evacuation periods. The final transfer learned DGCN-LSTM model performs well to predict evacuation traffic flow (RMSE=399.69). The implemented model can be applied to predict evacuation traffic over a longer forecasting horizon (6 hour). It will assist transportation agencies to activate appropriate traffic management strategies to reduce delays for evacuating traffic.

Predictive Deep Learning for Flood Evacuation Planning and Routing

2020

This research was completed in tandem as a project funded through MoDOT and the MidAmerica Transportation Center. It used deep learning methods, along with geospatial data from the USGS National Map and other public geospatial data sources, to develop forecasting tools capable of assessing water level rate of change in high risk flood areas. These tools build on existing models developed by the USGS, FEMA, and others and were used to determine evacuation routing and detours to mitigate the potential for loss of life during flash floods. The project scope included analysis of publicly available flood data along the Meramec River basin in Fenton as part of a pilot project in Missouri. These data were then used to determine the rate of rise in order to model evacuation or detour planning modules that can be implemented to assure the safety of the community and highway personnel, as well as the safe and secure transport of goods along public roadways. These modules were linked to existing realtime rainfall gauges and weather forecasts for improved accuracy and usability. The transportation safety or disaster planner can use these results to produce planning documents based on geospatial data and information to develop region-specific tools and methods.

Agent-based Simulation Model and Deep Learning Techniques to Evaluate and Predict Transportation Trends around COVID-19

ArXiv, 2020

The COVID-19 pandemic has affected travel behaviors and transportation system operations, and cities are grappling with what policies can be effective for a phased reopening shaped by social distancing. This edition of the white paper updates travel trends and highlights an agent-based simulation model's results to predict the impact of proposed phased reopening strategies. It also introduces a real-time video processing method to measure social distancing through cameras on city streets.

A-RESCUE: An Agent based Regional Evacuation Simulator Coupled with User Enriched Behavior

Networks and Spatial Economics, 2016

Household behavior and dynamic traffic flows are the two most important aspects of hurricane evacuations. However, current evacuation models largely overlook the complexity of household behavior leading to oversimplified traffic assignments and, as a result, inaccurate evacuation clearance times in the network. In this paper, we present a high fidelity multi-agent simulation model called A-RESCUE (Agent-based Regional Evacuation Simulator Coupled with User Enriched behavior) that integrates the rich activity behavior of the evacuating households with the network level assignment to predict and evaluate evacuation clearance times. The simulator can generate evacuation demand on the fly, truly capturing the dynamic nature of a hurricane evacuation. The simulator consists of two major components: household decision-making module and traffic flow module. In the simulation, each household is an agent making various evacuation related decisions based on advanced behavioral models. From household decisions, a number of vehicles are generated and entered in the evacuation transportation network at different time intervals. An adaptive routing strategy that can achieve efficient network-wide traffic measurements is proposed. Computational results are presented based on simulations over the Miami-Dade network with detailed representation of the road network geometry. The simulation results demonstrate the evolution of traffic congestion as a function of the household decision-making, the variance of the congestion Netw Spat Econ