Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria (original) (raw)
Related papers
Cytochrome bc 1 complex (complex III) and cytochrome c oxidase complex (complex IV) are multisubunit homodimers that are essential components of the mitochondrial respiratory chain. Complexes III and IV associate to form a supercomplex that can be displayed using blue native polyacrylamide gel electrophoresis. Both homodimeric complexes contain tightly associated cardiolipin (CL) required for function. We report here that in a crd1⌬ strain of yeast (null in expression of CL synthase) ϳ90% of complexes III and IV were observed as individual homodimers; only the supercomplex was observed with CRD1 wild type cells. Introduction of a plasmid born copy of the CRD1 gene under exogenous regulation by doxycycline made possible controlled variation in the in vivo CL levels. At an intermediate level of CL, a mixture of individual homodimers (30%) and supercomplex (70%) was observed. These results strongly indicate that CL plays a central role in higher order organization of components of the respiratory chain of mitochondria.
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes
Chemistry and Physics of Lipids, 2014
The organization of individual respiratory Complexes I, III, and IV (mammalian cells) or III and IV (yeast) of the mitochondria into higher order supercomplexes (SCs) is generally accepted. However, the factors that regulate SC formation and the functional significance of SCs are not well understood. The mitochondrial signature phospholipid cardiolipin (CL) plays a central role in formation and stability of respiratory SCs from yeast to man. Studies in yeast mutants in which the CL level can be regulated displayed a direct correlation between CL levels and SC formation. Disease states in which CL levels are reduced also show defects in SC formation. Threedimensional density maps of yeast and bovine SCs by electron cryo-microscopy show gaps between the transmembrane-localized interfaces of individual complexes consistent with the large excess of CL in SCs over that integrated into the structure of individual respiratory complexes. Finally, the yeast SC composed of Complex III and two Complexes IV was reconstituted in liposomes from purified individual complexes containing integrated CLs. Reconstitution was wholly dependent on inclusion of additional CL in the liposomes. Therefore, non-integral CL molecules play an important role in SC formation and may be involved in regulation of SC stability under metabolic conditions where CL levels fluctuate.
Journal of Proteomics, 2010
The role of cardiolipin acyl chain composition in assembly/stabilization of mitochondrial complexes was investigated using three yeast deletion mutants (acb1Δ strain; taz1Δ strain; and acb1Δtaz1Δ strain). Deletion of the TAZ1 gene, involved in cardiolipin acyl chain remodeling, is known to increase the content of monolyso-cardiolipin (MLCL) at the expense of CL, and to decrease the unsaturation of the remaining CL. Deletion of the ACB1 gene encoding the acyl-CoA-binding protein, involved in fatty acid elongation, decreases the average length of the CL acyl chains. Furthermore, a TAZ1ACB1 double deletion mutant strain was used in this study which has both a decrease in the length of the CL acyl chains and an increase in MLCL. BN/SDS PAGE analysis revealed that cardiolipin is important for the prohibitin-m-AAA protease complex, the α-ketoglutarate dehydrogenase complex and respiratory chain supercomplexes. The results indicate that the decreased level of complexes in taz1Δ and acb1Δtaz1Δ mitochondria is due to a decreased content of CL or the presence of MLCL.
Cardiolipin Stabilizes Respiratory Chain Supercomplexes
Journal of Biological Chemistry, 2003
Cardiolipin stabilized supercomplexes of Saccharomyces cerevisiae respiratory chain complexes III and IV (ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase, respectively), but was not essential for their formation in the inner mitochondrial membrane because they were found also in a cardiolipindeficient strain. Reconstitution with cardiolipin largely restored wild-type stability. The putative interface of complexes III and IV comprises transmembrane helices of cytochromes b and c 1 and tightly bound cardiolipin.
Cardiolipin Biosynthesis and Mitochondrial Respiratory Chain Function Are Interdependent
Journal of Biological Chemistry, 2004
Cardiolipin (CL) is an acidic phospholipid present almost exclusively in membranes harboring respiratory chain complexes. We have previously shown that, in Saccharomyces cerevisiae, CL provides stability to respiratory chain supercomplexes and CL synthase enzyme activity is reduced in several respiratory complex assembly mutants. In the current study, we investigated the interdependence of the mitochondrial respiratory chain and CL biosynthesis. Pulse-labeling experiments showed that in vivo CL biosynthesis was reduced in respiratory complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) and oxidative phosphorylation complex V (ATP synthase) assembly mutants. CL synthesis was decreased in the presence of CCCP, an inhibitor of oxidative phosphorylation that reduces the pH gradient but not by valinomycin or oligomycin, both of which reduce the membrane potential and inhibit ATP synthase, respectively. The inhibitors had no effect on phosphatidylglycerol biosynthesis or CRD1 gene expression. These results are consistent with the hypothesis that in vivo CL biosynthesis is regulated at the level of CL synthase activity by the ⌬pH component of the proton-motive force generated by the functional electron transport chain. This is the first report of regulation of phospholipid biosynthesis by alteration of subcellular compartment pH.
Cardiolipin Clusters and Membrane Domain Formation Induced by Mitochondrial Proteins
Journal of Molecular Biology, 2007
We show in this study that mitochondrial creatine kinase promotes segregation and clustering of cardiolipin in mixed membranes, a phenomenon that has been proposed to occur at contact sites in the mitochondria. This property of mitochondrial creatine kinase is dependent on the native octameric structure of the protein and does not occur after heatdenaturation or with the native dimeric form of the protein. Cardiolipin segregation was demonstrated by differential scanning calorimetry using membranes containing cardiolipin and either dipalmitoylphosphatidylethanolamine or 1-palmitoyl-2-oleoylphosphatidylethanolamine. Addition of the ubiquitous form of mitochondrial creatine kinase leads to the formation of a phosphatidylethanolamine-rich domain as a result of the protein binding preferentially to the cardiolipin. Such phase separation does not occur if cardiolipin is replaced with dioleoyl phosphatidylglycerol. Lipid phase separation is observed with other cardiolipin-binding proteins, including cytochrome c and, to a very small extent, with truncated Bid (t-Bid), as well as with the cationic polypeptide poly-L-lysine, but among these proteins the octameric form of mitochondrial creatine kinase is by far the most effective in causing segregation and clustering of cardiolipin. The proteins included in this study are found at mitochondrial contact sites where they are known to associate with cardiolipin. Domains in mitochondria enriched in cardiolipin play an important role in apoptosis and in energy flux processes.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2011
Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.
Metabolism and function of mitochondrial cardiolipin
Progress in Lipid Research, 2014
Since it has been recognized that mitochondria are crucial not only for energy metabolism but also for other cellular functions, there has been a growing interest in cardiolipin, the specific phospholipid of mitochondrial membranes. Indeed, cardiolipin is a universal component of mitochondria in all eukaryotes. It has a unique dimeric structure comprised of two phosphatidic acid residues linked by a glycerol bridge, which gives rise to unique physicochemical properties. Cardiolipin plays an important role in the structural organization and the function of mitochondrial membranes. In this article, we review the literature on cardiolipin biology, focusing on the most important discoveries of the past decade. Specifically, we describe the formation, the migration, and the degradation of cardiolipin and we discuss how cardiolipin affects mitochondrial function. We also give an overview of the various phenotypes of cardiolipin deficiency in different organisms.
Journal of Biological Chemistry, 2013
Background: Cardiolipin is required for in vivo respiratory supercomplex formation in Saccharomyces cerevisiae. Results: Supercomplex III 2 IV 2 reconstitution from purified complexes III and IV was dependent on addition of cardiolipin over their tightly bound amounts. Electron microscopy confirmed supercomplex organization. Conclusion: Supercomplex III 2 IV 2 formation is absolutely contingent on cardiolipin presence in the membrane. Significance: This minimal system provides understanding of lipid-dependent supercomplex dynamics in vivo.