Analysis of Polynomial Systems With Time Delays via the Sum of Squares Decomposition (original) (raw)

Abstract

sparkles

AI

The work presents a method for analyzing the stability of equilibria in nonlinear Delay Differential Equations (DDEs) by constructing Lyapunov-Krasovskii functionals through the sum of squares decomposition and semidefinite programming. This methodology is aimed at establishing both delay-dependent and independent-of-delay stability, with practical illustrations drawn from population dynamics.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. R. Srikant, The Mathematics of Internet Congestion Control. Boston, MA: Birkhäuser, 2003.
  2. Y. Kuang, Delay Differential Equations With Applications in Popula- tion Dynamics. New York: Academic Press, 1993, vol. 191.
  3. S.-I. Niculescu, Delay Effects on Stability: A Robust Control Ap- proach. New York: Springer-Verlag, 2001, vol. 269.
  4. V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations. Norwell, MA: Kluwer Academic Publishers, 1999.
  5. M. Y. Repin, "Quadratic Lyapunov functionals for systems with delay," Prik. Mat. Meh., vol. 29, pp. 564-566, 1965.
  6. P.-A. Bliman, "Lyapunov equation for the stability of linear delay sys- tems of retarded and neutral type," IEEE Trans. Automat. Control, vol. 47, no. 2, pp. 327-335, Feb. 2002.
  7. K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Sys- tems. Boston, MA: Birkhäuser, 2003.
  8. V. B. Kolmanovskii, S.-I. Niculescu, and J.-P. Richard, "On the Lya- punov-Krasovskii functionals for stability analysis of linear delay sys- tems," Int. J. Control, vol. 72, no. 4, pp. 374-384, 1999.
  9. P. Park, "A delay-dependent stability criterion for systems with uncer- tain time-invariant delays," IEEE Trans. Automat. Control, vol. 44, no. 4, pp. 876-877, Apr. 1999.
  10. K. Gu, "Discretised LMI set in the stability problem of linear uncertain time-delay systems," Int. J. Control, vol. 68, pp. 155-163, 1997.
  11. A. Papachristodoulou, M. Peet, and S. Lall, "Constructing Lyapunov- Krasovskii functionals for linear time delay systems," in Proc. Amer. Control Conf., 2005, pp. 2845-2850.
  12. P. A. Parrilo, "Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization," Ph.D. disserta- tion, California Institute of Technology, Pasadena, CA, 2000.
  13. A. Papachristodoulou and S. Prajna, "On the construction of Lyapunov functions using the sum of squares decomposition," in Proc. IEEE Conf. Decision Control, Dec. 2002, pp. 3482-3487.
  14. D. Henrion and J.-B. Lasserre, "Solving nonconvex optimization prob- lems," IEEE Control Syst. Mag., vol. 24, no. 3, pp. 72-83, 2004.
  15. A. Papachristodoulou, "Analysis of nonlinear time delay systems using the sum of squares decomposition," in Proc. ACC, 2004, pp. 4153-4158.
  16. M. Peet and S. Lall, "Constructing Lyapunov functions for nonlinear delay-differential equations using semidefinite programming," in Proc. NOLCOS, 2004, pp. 381-385.
  17. A. Papachristodoulou, J. C. Doyle, and S. H. Low, "Analysis of non- linear delay differential equation models of TCP/AQM protocols using sums of squares," in Proc. IEEE CDC, 2004, pp. 4684-4689.
  18. A. Papachristodoulou, "Robust stabilization of nonlinear time delay systems using convex optimization," in Proc. IEEE CDC, Dec. 2005, pp. 5788-5793.
  19. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993, vol. 99.
  20. A. Papachristodoulou and S. Prajna, "Analysis of non-polynomial sys- tems using the sum of squares decomposition," in Positive Polynomials in Control, H. Didier and A. Garullieds, Eds. Berlin/Heidelberg, Ger- many: Springer, 2005, vol. 312, pp. 23-43.
  21. G. Chesi, "Domain of attraction: Estimates for non-polynomial systems via LMIs," in Proc. 16th IFAC World Congress Automat. Control, 2005, [CD ROM].
  22. J.-B. Lasserre, "Global optimization with polynomials and the problem of moments," SIAM J. Optim., vol. 11, pp. 796-817, 2001.
  23. Y. Nesterov, "Squared functional systems and optimization problems," in High Performance Optimization Methods. Norwell, MA: Kluwer Academic Publishers, 2000, pp. 405-439.
  24. D. Henrion and A. Garulli, Positive Polynomials in Control. New York: Springer, 2005.
  25. G. Chesi, A. Tesi, A. Vicino, and R. Genesio, "On convexification of some minimum distance problems," in Proc. Eur. Control Conf., 1999, [CD ROM].
  26. M. Putinar, "Positive polynomials on compact semialgebraic sets," In- diana Univ. Math. J., vol. 42, no. 3, pp. 969-984, 1993.
  27. J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry. New York: Springer-Verlag, 1998.
  28. O. Toker and H. Ozbay, "Complexity issues in robust stability of linear delay-differential systems," Math., Control, Signals, Syst., vol. 9, pp. 386-400, 1996.
  29. F. Mazenc and S.-I. Niculescu, "Lyapunov stability analysis for non- linear delay systems," Syst. Control Lett., vol. 42, pp. 245-251, 2001.
  30. S. Prajna, A. Papachristodoulou, and P. A. Parrilo, SOSTOOLS-Sum of Squares Optimization Toolbox, User's Guide [Online]. Available: http://www.cds.caltech.edu/sostools 2002
  31. P. J. Wangersky and W. J. Cunningham, "Time lag in prey-predator population models," Ecology, vol. 38, no. 1, pp. 136-139, 1957.
  32. M. M. Peet, A. Papachristodoulou, and S. Lall, "Positive forms and stability of linear time-delay systems," SIAM J. Control Optim., vol. 47, no. 6, pp. 3237-3258, 2009.