Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis (original) (raw)
Related papers
Journal of Clinical Microbiology, 2012
Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/ 66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.
PloS one, 2016
Neisseria meningitidis (Nm), Haemophilus influenzae (Hi), and Streptococcus pneumoniae (Sp) are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR) requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA) and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y) targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824-135,982 for 5x Omni, and 168-6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqM...
High-throughput, 2018
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTube (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTube platform and using a tar...
FEMS microbiology letters, 2012
Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100–1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII.
Journal of Clinical Microbiology, 2001
A single-tube 5* nuclease multiplex PCR assay was developed on the ABI 7700 Sequence Detection System (TaqMan) for the detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae from clinical samples of cerebrospinal fluid (CSF), plasma, serum, and whole blood. Capsular transport (ctrA), capsulation (bexA), and pneumolysin (ply) gene targets specific for N. meningitidis, H. influenzae, and S. pneumo- niae,
A Multi-Target Real-Time PCR Assay for Rapid Identification of Meningitis-Associated Microorganisms
Molecular Biotechnology, 2013
A central nervous system (CNS) infection, such as meningitis, is a serious and life-threatening condition. Bacterial meningitis can be severe and may result in brain damage, disability or even death. Rapid diagnosis of CNS infections and identification of the pathogenic microorganisms are needed to improve the patient outcome. Bacterial culture of a patient's cerebrospinal fluid (CSF) is currently considered the ''gold standard'' for diagnosing bacterial meningitis. From the CSF cultures researchers can assess the in vitro susceptibility of the causative microorganism to determine the best antibiotic treatment. However, many of the culture assays, such as microscopy and the latex agglutination test are not sensitive. To enhance pathogen detection in CSF samples we developed a multitarget real-time PCR assay that can rapidly identify six different microorganisms: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Streptococcus agalactiae, Listeria monocytogenes and Cryptococcus neoformans. In this study we applied this PCR analysis to 296 CSF samples from patients who were suspected of having meningitis. Of the 296 samples that were examined, 59 samples were positive according to the CSF culture and/or molecular assays. Forty-six CSF samples were positive for both the CSF culture and our real-time PCR assay, while 13 samples were positive for the realtime PCR but negative for the traditional assays. This discrepancy may have been caused by the fact that these samples were collected from 23 patients who were treated with antimicrobials before CSF sampling. Keywords Meningitis Á Real-time PCR Á Rapid diagnosis Marco Favaro and Carla Fontana contributed equally to this study.
BMC Microbiology, 2010
Background: Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. Results: The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood-and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10 5 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. Conclusions: The PCR provides increased sensitivity and the multiplex format facilitates diagnosis of S. pneumoniae, H. influenzae and N. meningitidis and the assay enable detection after antibiotic treatment has been installed. Quantification increases the specificity of the etiology for pneumonia.
International journal of molecular sciences, 2018
Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: , and . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for , and of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive sa...
Annals of Laboratory Medicine, 2012
Background: Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods: Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results: The lower detection limits ranged from 10 1 copies/μL to 5 × 10 1 copies/μL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions: The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.
Clinical Microbiology and Infection, 2005
Rapid, accurate and inexpensive diagnosis of bacterial meningitis is critical for patient management. This study describes the development and evaluation of a multiplex PCR assay for the detection of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae type b, which globally account for 90% of cases of bacterial meningitis. The single-tube assay, based on the ctrA, ply and bex targets, respectively, enabled detection of 5-10 pg DNA. When the assay was tested with clinical samples (n = 425), its sensitivity for the three targets was 93.9%, 92.3% and 88%, respectively, while the overall specificity and positive predictive value of the assay was 100%. The negative predictive value was 99.1-99.5%. The methodology permits rapid and accurate detection of the three main pathogens that cause bacterial meningitis.