Enteric viruses in New Zealand drinking-water sources (original) (raw)

Current assumptions for quantitative microbial risk assessment (QMRA) of Norovirus contamination of drinking water catchments due to recreational activities: an update

Journal of Water and Health

Contamination of drinking water from Norovirus (NoV) and other waterborne viruses is a major public health concern globally. Increasingly, quantitative microbial risk assessment (QMRA) is being used to assess the various risks from waterborne pathogens and evaluate control strategies. As urban populations grow and expand, there is increasing demand for recreational activities in drinking water catchments. QMRA relies on context-specific data to map out the pathways by which viruses can enter water and be transferred to drinking water consumers and identify risk factors and appropriate controls. This review examines the current evidence base and assumptions for QMRA analysis of NoV and other waterborne viral pathogens and recommends numerical values based on the most recent evidence to better understand the health risks associated with recreators in Australian drinking water sources; these are broadly applicable to all drinking water sources where recreational access is allowed. Key ...

Detection of Human Enteric Viruses in Freshwater from European Countries

Food and Environmental Virology, 2016

The transmission of water-borne pathogens typically occurs by a faecal-oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring quality of surface waters.

Global public health implications of human exposure to viral contaminated water

Frontiers in Microbiology, 2022

Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging...

A new analytical tool to assess health risks associated with the virological quality of drinking water (EMIRA study)

Water Science and Technology, 2001

This work assessed the risks associated with the virological quality of tapwater using a molecular analytical tool manageable in a field survey. It combined a daily epidemiological follow-up of digestive morbidity among a panel of volunteers and a microbiological surveillance of drinking water. RT-PCR was used for detection of enterovirus, rotavirus and astrovirus. 712 cases of acute digestive conditions occurred in the 544 volunteers. 38% (9/24) raw water and 23% (10/44) tap water samples were positive for at least one virus marker with 9/10 positive tap water samples complying with bacterial criteria. No statistically significant association was found between the presence of viral markers and observed incidence of digestive morbidity. However, when an outbreak occurred, enterovirus and rotavirus RNA was detected in the corresponding stored tap water samples. Sequencing of the amplified fragments showed that the rotavirus detected was of bovine origin. This work demonstrated that enteric virus markers were common in tapwater of the study communities (characterised by a vulnerable raw water) despite absence of bacterial indicators. Tangential ultrafiltration coupled to RT-PCR allowed a simultaneous and fast detection of the study viruses from environmental samples. This process is a promising tool usable for virological water surveillance, in as much the corresponding know-how is transferred to the field professionals.

Interlaboratory Comparative Study to Detect Potentially Infectious Human Enteric Viruses in Influent and Effluent Waters

Food and Environmental Virology, 2019

Wastewater represents the main reusable water source after being adequately sanitized by wastewater treatment plants (WWTP). In this sense, only bacterial quality indicators are usually checked to this end, and human pathogenic viruses usually escape from both sanitization procedures and controls, posing a health risk on the use of effluent waters. In this study, we evaluated a protocol based on aluminium adsorption-precipitation to concentrate several human enteric viruses, including norovirus genogroup I (NoV GI), NoV GII, hepatitis A virus (HAV), astrovirus (HAstV), and rotavirus (RV), with limits of detection of 4.08, 4.64, 5.46 log genomic copies/L, 3.31, and 5.41 log PCR units (PCRU)/L, respectively. Furthermore, the method was applied in two independent laboratories to monitor the presence of NoV GI, NoV GII, and HAV in effluent and influent waters collected from five WWTPs at two different sampling dates. Concomitantly, a viability PMAxx-RT-qPCR was applied to all the samples to get information on the potential infectivity of both influent and effluent waters. The range of the titers in influent waters for NoV GI, NoV GII, RV and HAstV was 4.80-7.56, 5.19-7.31 log genomic copies/L, 5.41-6.52, and 4.59-7.33 log PCRU/L, respectively. In effluent waters, the titers ranged between 4.08-6.27, 4.64-6.08 log genomic copies/L, <5.51, and 3.31-5.58 log PCRU/L. Moreover, the viral titers detected by viability RT-qPCR showed statistical differences with RT-qPCR alone, suggesting the potential viral infectivity of the samples despite some observed reductions. The proposed method could be applied in ill-equipped laboratories, due to the lack of a requirement for a specific apparatus (i.e., ultracentrifuge).

EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. I. Collection of Virus Samples

Journal of Visualized Experiments, 2015

EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ ground water are 300 L and 1,500 L, respectively. A major method limitation is the tendency for the filters to clog before meeting the sample volume requirement. Studies using two different, but equivalent, cartridge filter options showed that filter clogging was a problem with 10% of the samples with one of the filter types compared to 6% with the other filter type. Clogging tends to increase with turbidity, but cannot be predicted based on turbidity measurements only. From a cost standpoint one of the filter options is preferable over the other, but the water quality and experience with the water system to be sampled should be taken into consideration in making filter selections.

Public health significance of viral contamination of drinking water

African Journal of …, 2009

Groundwater is the commonest transmission route for these viruses. About 50% of groundwater related disease outbreaks are attributable to viruses. Recent studies in developed countries have focused on public water systems, unfortunately, without much attention to private household wells and storage facilities. This paper reviews disease outbreaks attributed to water-borne viruses, the public health significance of enteric viral diseases and problems encountered in the development of diagnostic assays. The objective of this review is to confer the rationale for more research to provide reliable baseline information on the significance of water-borne viruses in the developing world. Since the virological quality of drinking water can no longer be compromised, rapid and sensitive methods for detecting enteric viruses in drinking water, recreational water and their sources is a necessity. As a preventive measure, ground, surface and treated drinking water must be protected from viral contamination. Enforcement of legislative measures for regular viral monitoring of drinking water in the industry will ensure safety of consumers.

Human adenovirus (HAdV), human enterovirus (hEV), and genogroup A rotavirus (GARV) in tap water in southern Brazil

Journal of Water and Health, 2014

The effects of viral gastroenteritis are more devastating in children than in any other age category. Thus, children exposed to the consumption of low quality water are at an increased risk of infection, especially in regions where sanitation is inadequate. The present study aimed to provide a survey of the occurrence of representative enteric viruses: human adenovirus (HAdV), human enteroviruses (hEV), and genogroup A rotavirus (GARV) in tap water samples collected in public schools located at six municipalities of Rio Grande do Sul, southern Brazil. Seventy-three schools were included in the study and tap water samples were analyzed by conventional PCR for the presence of HAdV, hEV, and GARV genomes. hEV showed the highest detection rate (27.4%), followed by HAdV (23.3%), and GARV (16.4%). New approaches to water monitoring should be considered to promote a better water quality and reduce the risk of waterborne diseases, especially considering drinking water to be served to vulner...

Assessment of the prevalence of enteric viruses in the final effluents of two peri-urban wastewater treatment plants

Asian Pacific Journal of Tropical Disease, 2017

The journal implements double-blind peer review practiced by specially invited international editorial board members. Objective: To assess the prevalence of enteric viruses in the final effluents of two peri-urban wastewater treatment plants (WWTPs) in Amathole District Municipality in the Eastern Cape Province of South Africa from September 2012 to August 2013. Methods: Water samples were collected monthly from the final effluents of the selected WWTPs (WWTP-K and WWTP-R) located in Komga and East London, respectively in Amathole District Municipality for a period of 12 months between September 2012 and August 2013. RT-PCR was used for the detection of adenoviruses (AdV), rotaviruses and hepatitis A virus while conventional PCR was used to delineate all detected viruses into their serotypes using specific primer sets. Results: None of the viruses were detected in samples from WWTP-R. In effluent samples from WWTP-K, rotaviruses were detected in 58% (7/12) of the samples in concentrations ranging from 1.7 × 10 4 to 2.3 × 10 6 genome copies/L while AdV and hepatitis A virus were detected in 17% (2/12) of the samples in concentrations ranging from 4.5 × 10 to 2.8 × 10 2 and 2.3 × 10 to 7.1 × 10 genome copies/L, respectively. Molecular characterization of AdV positive samples showed the presence of species B, species C and species F (AdV41) from the May and June 2013 samples. Conclusions: Detection of enteric viruses in final effluents reflects the inability of WWTPs to completely remove viruses from final effluents and the likelihood of contaminating receiving watersheds with potentially virulent viral particles, which may pose a serious health risk to people directly utilizing such water either for consumption or full contact purposes.

High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia

International Journal of Hygiene and Environmental Health, 2011

Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with realtime RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks.