An endosomal tether undergoes an entropic collapse to bring vesicles together (original) (raw)

Membrane Trafficking: An Endosome Tether Meets a Rab and Collapses

Current Biology, 2016

Long-range tethering is a ubiquitous recognition event preceding membrane fusion. A new study shows that Rab GTPase binding causes 'entropic collapse' of the coiled-coil endosome tether EEA1, driving membrane apposition and facilitating short-range interactions required for fusion.

Membrane dynamics and fusion at late endosomes and vacuoles – Rab regulation, multisubunit tethering complexes and SNAREs

European Journal of Cell Biology, 2011

Membrane fusion at late endosomes and vacuoles depends on a conserved machinery, which includes Rab GTPases, their binding to tethering complexes and SNAREs. Fusion is initiated by the interaction of Rabs with tethering complexes. At the endosome, the CORVET complex interacts with the Rab5 GTPase Vps21, whereas the homologous HOPS complex binds the Rab7-like Ypt7 at the late endosome and vacuole. Activation of Ypt7 requires the recruitment of the Mon1-Ccz1 complex to the late endosome, which occurs via the CORVET complex. The interaction of Rab and the tethering complex is followed by the assembly of SNAREs, which leads to bilayer mixing. In this review, we will summarize our current knowledge on the mechanisms and regulation of endosome and vacuole membrane dynamics, and their role in organelle physiology.

Multivalent Rab interactions determine tether-mediated membrane fusion

Molecular biology of the cell, 2017

Membrane fusion at endomembranes requires cross-talk between Rab GTPases and tethers to drive SNARE-mediated lipid bilayer mixing. Several tethers have multiple Rab-binding sites with largely untested function. Here we dissected the lysosomal HOPS complex as a tethering complex with just two binding sites for the Rab7-like Ypt7 protein to determine their relevance for fusion. Using tethering and fusion assays combined with HOPS mutants, we show that HOPS-dependent fusion requires both Rab-binding sites, with Vps39 being the stronger Ypt7 interactor than Vps41. The intrinsic amphipathic lipid packaging sensor (ALPS) motif within HOPS Vps41, a target of the vacuolar kinase Yck3, is dispensable for tethering and fusion but can affect tethering if phosphorylated. In combination, our data demonstrate that a multivalent tethering complex uses its two Rab bindings to determine the place of SNARE assembly and thus fusion at endomembranes.

A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles

Cell, 1994

Rab proteins are generally required for transport vesicle docking. We have exploited yeast secretion mutants to demonstrate that a rab protein is required for V-SNARES and t-SNARES to assemble. The absence of the rab protein in the docking complex suggests that, in a broad sense, rab proteins participate in a reaction catalyzing SNARE complex assembly. In so doing, rab proteins could help impart an additional layer of specificity to vesicle docking. This mechanism likely involves the Secl homolog Slyl, which we identified in isolated docking complexes.

Structural and Functional Analysis of the Globular Head Domain of p115 Provides Insight into Membrane Tethering

Journal of Molecular Biology, 2009

Molecular tethers have a central role in the organization of the complex membrane architecture of eukaryotic cells. p115 is a ubiquitous, essential tether involved in vesicle transport and the structural organization of the exocytic pathway. We describe two crystal structures of the N-terminal domain of p115 at 2.0 Å resolution. The p115 structures show a novel α-solenoid architecture constructed of 12 armadillo-like, tether-repeat, α-helical tripod motifs. We find that the H1 TR binds the Rab1 GTPase involved in endoplasmic reticulum to Golgi transport. Mutation of the H1 motif results in the dominant negative inhibition of endoplasmic reticulum to Golgi trafficking. We propose that the H1 helical tripod contributes to the assembly of Rab-dependent complexes responsible for the tether and SNARE-dependent fusion of membranes.

Rab1 Recruitment of p115 into a cis-SNARE Complex: Programming Budding COPII Vesicles for Fusion

Science, 2000

The guanosine triphosphatase Rab1 regulates the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus through interaction with effector molecules, but the molecular mechanisms by which this occurs are unknown. Here, the tethering factor p115 was shown to be a Rab1 effector that binds directly to activated Rab1. Rab1 recruited p115 to coat protein complex II (COPII) vesicles during budding from the endoplasmic reticulum, where it interacted with a select set of COPII vesicle-associated SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) to form a cis-SNARE complex that promotes targeting to the Golgi apparatus. We propose that Rab1-regulated assembly of functional effector-SNARE complexes defines a conserved molecular mechanism to coordinate recognition between subcellular compartments.

The Architecture of the Multisubunit TRAPP I Complex Suggests a Model for Vesicle Tethering

Cell, 2006

Transport protein particle (TRAPP) I is a multisubunit vesicle tethering factor composed of seven subunits involved in ER-to-Golgi trafficking. The functional mechanism of the complex and how the subunits interact to form a functional unit are unknown. Here, we have used a multidisciplinary approach that includes Xray crystallography, electron microscopy, biochemistry, and yeast genetics to elucidate the architecture of TRAPP I. The complex is organized through lateral juxtaposition of the subunits into a flat and elongated particle. We have also localized the site of guanine nucleotide exchange activity to a highly conserved surface encompassing several subunits. We propose that TRAPP I attaches to Golgi membranes with its large flat surface containing many highly conserved residues and forms a platform for protein-protein interactions. This study provides the most comprehensive view of a multisubunit vesicle tethering complex to date, based on which a model for the function of this complex, involving Rab1-GTP and long, coiled-coil tethers, is presented.

Role of vesicle tethering factors in the ER–Golgi membrane traffic

FEBS Letters, 2009

Tethers are a diverse group of loosely related proteins and protein complexes grouped into 3 families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the 3 families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.

The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes

Proceedings of the National Academy of Sciences, 2013

Membrane fusion along the endocytic pathway occurs in a sequence of tethering, docking, and fusion. At endosomes and vacuoles, the CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) tethering complexes require their organelle-specific Rabs for localization and function. Until now, despite the absence of experimental evidence, it has been assumed that CORVET is a membrane-tethering factor. To test this theory and understand the mechanistic analogies with the HOPS complex, we set up an in vitro system, and establish CORVET as a bona-fide tether for Vps21-positive endosome/vacuole membranes. Purified CORVET binds to SNAREs and Rab5/Vps21-GTP. We then demonstrate that purified CORVET can specifically tether Vps21-positive membranes. Tethering via CORVET is dose-dependent, stimulated by the GEF Vps9, and inhibited by Msb3, the Vps21-GAP. Moreover, CORVET supports fusion of isolated membranes containing Vps21. In agreement with its rol...