beta phase manganese dioxide nanorods Synthesis and characterization for supercapacitor applications (original) (raw)

2015, arXiv: Materials Science

Abstract

Manganese dioxide nanorods were synthesized using novel solution route. The phase and microstructure of synthesized materials were identified using X ray diffraction, scanning electron and transmission electron microscopic measurements. The material crystallizes into beta crystallographic phase and consists of nanorods of diameter in the range of about 10-14 nm and length about 50 nm. The Fourier Transform Infrared (FTIR) spectroscopic and thermogravimetric analysis (TGA) measurements were carried out to understand the materials microscopic and thermal properties. The material exhibits characteristic Mn O vibrational frequencies, confirming the phase purity of material. The electrochemical performance of beta MnO2 nanorods was evaluated using cyclic voltammetry and galvanostatic charge and discharge measurements using inhouse developed supercapacitor device assembly. We observed about 125 F per g specific capacitance for beta MnO2 nanorods electrode materials.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. V. REFERENCES
  2. J. Y Luo and Y.Ya Xia, Effect of pore structure on the electrochemical capacitive performance of MnO 2 , Journal of The Electrochemical Society, 154 (11) A987-A992 (2007)
  3. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publisher, New York (1999)
  4. A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources, 91, 37-50 (2000).
  5. R. Kotz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45, 2483 (2000)
  6. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7, 845 (2008)
  7. M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104, 4245 (2004)
  8. S. Devaraj and N. Munichandraiah, Effect of crystallographic structure of MnO 2 on its electrochemical capacitance properties, J. Phys. Chem. C ,112, 4406-4417 (2008);
  9. P. Ragupathy, H. N. Vasan, and N. Munichandraiah, Synthesis and characterization of nano-MnO 2 for electrochemical supercapacitor studies, J. Electrochem. Soc., 155 (1) A34-A40 (2008).
  10. Z. Yu, B. Duong, D. Abbitt and J. Thomas, Highly ordered MnO 2 nanopillars for enhanced supercapacitor performance, Adv. Mater. 25, 3302, (2013)
  11. H. Xia, Y. S. Meng, G. Yuan, C. Cui and L. Lu, A symmetric RuO 2 /RuO 2 suupercapacitor operating at 1.6V using a neutral aqueous electrolyte, Electrochem. Solid-State Lett. 15, A60 (2012)
  12. V. Subramanian, S. C. Hall, P. H. Smith and B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode materials, Solid State Ionics, 175, 511 (2004)
  13. C. D. Lokhande, D. P. Dubal and O. S. Joo, Metal oxide based thin film supercapacitors, Current Appl. Phys., 11, 255 (2011)
  14. C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, Nano Letters, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitor, 6, 2690 (2006)
  15. S. Xiong, C. Yuan, X. Zhang and Y. Qian, Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors, Cryst. Eng. Comm., 13, 626 (2011)
  16. R. S. Kalubarme, H. S. Jadhav and C. J. Park, Electrochemical characteristics of two-dimensional nano-structured MnO2 for symmetric supercapacitor, Electrochimica Acta 87, 457 (2013)
  17. R. B. Rakhi, W. Chen, M. N. Hedhili, D. Cha, and H. N. Alshareef, Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration, Appl. Mater. Interfaces, 6, 4196 (2014)
  18. M. Toupin, T. Brousse and D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16, 3184 (2004)
  19. C. Wei, H. Pang, B. Zhang, Q. Lu, S. Liang and F. Gao, Two- -MnO2 nanowire network with enhanced electrochemical capacitance, Scientific Reports, 3, 2193 (2013)
  20. E. J. Mittenmeijer, P. Scardi, Diffraction Analysis of the Microstructure of Materials, Springer (2004)