Mimo Channel and Performance Analysis using OFDM System for Reduced Bit Error Rate (original) (raw)

Multiple-input Multiple-output (MIMO) systems use multiple antennas at the transmitter and receiver end, are a key technology to meet the growing demand for high data rate wireless systems. The aim of this thesis is to investigate MIMO system capacity with the aim of achieving optimum Bit Error Rate (BER) while increasing the system capacity using multicarrier delay diversity modulation (MDDM), proposed for fifth generation systems. In principle, the capacity of MIMO system can increase linearly with the number of antennas. Multiple antennas at the transmitter and receiver provide diversity in a fading environment. Furthermore, the research work in this thesis consists of different investigations of the basic principle of MIMO, Multiple-input Single-output (MISO) and Single-input Single-output (SISO) wireless communication systems with Space Time Codes (STC). A MISO systems and MIMO systems are schematized using MDDM which incorporated with Orthogonal Frequency Division Multiplexing (OFDM). OFDM is chosen over a single-carrier solution due to lower complexity of equalizers for high delay spread channels or high data rates. The design is implemented with binary Phase Shift Keying (BPSK) and simulated using MATLAB, which is examined in associated Additive White Gaussian Noise (AWGN) channel. The receiver-design is included with the maximal ratio combiner (MRC) receiving technique with perfect wisdom of channel state information (CSI). The theoretical performance is derived for AWGN channels and compared with the simulated results as well as compared between each system to another.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.