Jacobs Journal of Bioinformatics and Proteomics Systems Biology of the Proteomic Analysis of Cytotoxic Gold Compounds in A 2780 Ovarian Cancer Cell Line : A Network Analysis (original) (raw)
Related papers
Cancer Chemotherapy and Pharmacology, 2022
Purpose Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC) 2 PF 6 , i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. Methods A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidationsensitive protein cysteines. Results Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC) 2 PF 6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. Conclusions In this study, we deepened the mode of action of Au(NHC) and Au(NHC) 2 PF 6 , identifying common cellular targets but confirming their different influence on the mitochondrial function.
Exploring the biochemical mechanisms of cytotoxic gold compounds: a proteomic study
JBIC Journal of Biological Inorganic Chemistry, 2010
We have recently shown that a group of structurally diverse gold compounds are highly cytotoxic toward a panel of 36 human tumor cell lines through a variety of biochemical mechanisms. A classic proteomic approach is exploited here to gain deeper insight into those mechanisms. This investigation is focused on Auoxo6, a novel binuclear gold(III) complex, and auranofin, a clinically established gold(I) antiarthritic drug. First, the 72-h cytotoxicity profiles of Auoxo6 and auranofin were determined against A2780 human ovarian carcinoma cells. Subsequently, protein extraction from gold-treated A2780 cells sensitive to cisplatin and 2D gel electrophoresis separation were carried out according to established procedures. Notably, both metallodrugs caused relatively modest changes in protein expression in comparison with controls as only 11 out of approximately 1,300 monitored spots showed appreciable quantitative changes. Very remarkably, six altered proteins were in common between the two treatments. Eight altered proteins were identified by mass spectrometry; among them was ezrin, a protein associated with the cytoskeleton and involved in apoptosis. Interestingly, two altered proteins, i.e., peroxiredoxins 1 and 6, are known to play crucial roles in the cell redox metabolism. Increased cleavage of heterogeneous ribonucleoprotein H was also evidenced, consistent with caspase 3 activation. Overall, the results of the present proteomic study point out that the mode of action of Auoxo6 is strictly related to that of auranofin, that the induced changes in protein expression are limited and selective, that both gold compounds trigger caspase 3 activation and apoptosis, and that a few affected proteins are primarily involved in cell redox homeostasis.
Proteomic analysis of ovarian cancer cell responses to cytotoxic gold compounds
Metallomics : integrated biometal science, 2012
Platinum-based chemotherapy is the primary treatment for human ovarian cancer. Overcoming platinum resistance has become a critical issue in the current chemotherapeutic strategies of ovarian cancer as drug resistance is the main reason for treatment failure. Cytotoxic gold compounds hold great promise to reach this goal; however, their modes of action are still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2-DE and MS analysis to identify differential protein expression in a cisplatin-resistant human ovarian cancer cell line (A2780/R) following treatment with two representative gold compounds, namely Auranofin and Auoxo6. It is shown that Auranofin mainly acts by altering the expression of Proteasome proteins while Auoxo6 mostly modifies proteins related to mRNA splicing, trafficking and stability. We also found that Thioredoxin-like protein 1 expression is greatly reduced after treatment with both gold compounds. These results are highly indic...
Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies
Medicinal Research Reviews, 2009
Gold compounds are a class of metallodrugs with great potential for cancer treatment. During the last two decades, a large variety of gold(I) and gold(III) compounds are reported to possess relevant antiproliferative properties in vitro against selected human tumor cell lines, qualifying themselves as excellent candidates for further pharmacological evaluation. The unique chemical properties of the gold center confer very interesting and innovative pharmacological profiles to gold-based metallodrugs. The primary goal of this review is to define the state of the art of preclinical studies on anticancer gold compounds, carried out either in vitro or in vivo. The available investigations of anticancer gold compounds are analyzed in detail, and particular attention is devoted to underlying molecular mechanisms. Notably, a few biophysical studies reveal that the interactions of cytotoxic gold compounds with DNA are generally far weaker than those of platinum drugs, implying the occurrence of a substantially different mode of action. A variety of alternative mechanisms were thus proposed, of which those involving either direct mitochondrial damage or proteasome inhibition or modulation of specific kinases are now highly credited. The overall perspectives on the development of gold compounds as effective anticancer drugs with an innovative mechanism of action are critically discussed on the basis of the available experimental evidence.
Journal of Proteomics, 2014
Aubipy c is an organogold(III) compound endowed with encouraging anti-proliferative properties in vitro that is being evaluated pre-clinically as a prospective anticancer agent. A classical proteomic approach is exploited here to elucidate the mechanisms of its biological actions in A2780 human ovarian cancer cells. Based on 2-D gel electrophoresis separation and subsequent mass spectrometry identification, a considerable number of differentially expressed proteins were highlighted in A2780 cancer cells treated with Aubipy c . Bioinformatic analysis of the groups of up-regulated and down-regulated proteins pointed out that Aubipy c primarily perturbs mitochondrial processes and the glycolytic pathway. Notably, some major alterations in the glycolytic pathway were validated through Western blot and metabolic investigations.
Carcinogenesis, 2008
A hallmark of cancer cells is their ability to evade apoptosis and mitochondria play a critical role in this process. Delineating mitochondrial differences between normal and cancer cells has proven challenging due to the lack of matched cell lines. Here, we compare two matched liver progenitor cell (LPC) lines, one non-tumorigenic [p53-immortalized liver (PIL) 4] and the other tumorigenic (PIL2). Analysis of these cell lines and a p53 wildtype non-tumorigenic cell line [bipotential murine oval liver (BMOL)] revealed an increase in expression of genes encoding the antiapoptotic proteins cellular inhibitor of apoptosis protein (cIAP) 1 and yes associate protein in the PIL2 cells, which resulted in an increase in the protein encoded by these genes. PIL2 cells have higher mitochondrial membrane potential (Dc m ) compared with PIL4 and BMOL and had greater levels of reactive oxygen species, despite the fact that the mitochondrial antioxidant enzyme, manganese superoxide disumutase, was elevated at transcript and protein levels. Taken together, these results may account for the observed resistance of PIL2 cells to apoptotic stimuli compared with PIL4. We tested a new gold compound to show that hyperpolarized Dc m led to its increased accumulation in mitochondria of PIL2 cells. This compound selectively induces apoptosis in PIL2 cells but not in PIL4 or BMOL. The gold compound depolarized the Dc m , depleted the adenosine triphosphate pool and activated caspase-3 and caspase-9, suggesting that apoptosis was mediated via mitochondria. This investigation shows that the non-tumorigenic and tumorigenic LPCs are useful models to delineate the role of mitochondrial dysfunction in tumorigenesis and for the future development of mitochondria-targeted chemotherapeutics that selectively target tumor cells.
2D-DIGE analysis of ovarian cancer cell responses to cytotoxic gold compounds
Molecular BioSystems, 2012
Cytotoxic gold compounds hold today great promise as new pharmacological agents for treatment of human ovarian carcinoma; yet, their mode of action is still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2D-DIGE analysis to identify differential protein expression in a cisplatin-sensitive human ovarian cancer cell line (A2780/S) following treatment with two representative gold(III) complexes that are known to be potent antiproliferative agents, namely AuL12 and Au 2 Phen. Software analysis using DeCyder was performed and few differentially expressed protein spots were visualized between the three examined settings after 24 h exposure to the cytotoxic compounds, implying that cellular damage at least during the early phases of exposure is quite limited and selective, reflecting the attempts of the cell to repair damage and to survive the insult. The potential of novel proteomic methods to disclose mechanistic details of cytotoxic metallodrugs is herein further highlighted. Different patterns of proteomic changes were highlighted for the two metallodrugs with only a few perturbed protein spots in common. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified. Two of these were validated by western blotting: Ubiquilin-1, responsible for inhibiting degradation of proteins such as p53 and NAP1L1, a candidate marker identified in primary tumors. Ubiquilin-1 resulted over-expressed following both treatments and NAP1L1 was down-expressed in AuL12-treated cells in comparison with control and with Au 2 Phentreated cells. In conclusion, we performed a comprehensive analysis of proteins regulated by AuL12 and Au 2 Phen, providing a useful insight into their mechanisms of action.