The microbiome and cancer (original) (raw)

Editorial: Host-microbiota and cancer

Frontiers in Oncology

Cancer is the 2 nd leading cause of death in the United States, making up an average of 21% of deaths in both genders (1). The COVID-19 pandemic impacted the diagnosis and treatment of cancer, starting from its peak in mid-2020 and still recovering (2). With continued mortality and incidence due to this disease, research has migrated to other areas of interest for mechanisms to aid cancer management, such as exosomes, nucleic acids, and, more innovatively, the gut microbiota. The human microbiome is a complex community composed of various microorganisms, including bacteria, viruses, fungi, and protozoans. It contains approximately 100 trillion microorganisms and can be found at different body points, such as the skin and respiratory system. Still, the majority commonly reside in the gastrointestinal region (3). The connection between microbiome and health began to be established with the microbiome having evolving links in cardiovascular, inflammatory bowel disease, and cancer (4-6). Within the scope of cancer, it is now well known that a high involvement of microbiota can indirectly or directly affect the occurrence, treatment outcome, and drug resistance. For example, Helicobacter pylori are cancer-related pathogen that can increase the incidence of gastric cancer (7). This microorganism and others will generally be responsible for approximately 20% of cancer cases (8). Additionally, the microbiota in the body has been found to have interactions in the tumor microenvironment and has ways to promote or regulate carcinogenesis and cancer therapeutic response. This can occur through signaling pathways, inducing DNA damage, and immune system regulation (9). The ability of the human microbiota to play a functional role in carcinogenesis identifies it as a potential and worthy subject for further research to understand the regulatory mechanisms for pathogen-related cancers. Furthermore, research is essential and beneficial as it can aid in identifying novel therapeutics for cancer management. Studies have shown that the tumor microbiota has a different composition than normal, and the type of composition can affect different points of development and progression. The microbiome can help regulate cancer at various points and is commonly due to the significant difference in the microbiota composition. Therefore, understanding how the Frontiers in Oncology frontiersin.org 01

The Role of the Microbiome in Cancer and the Development of Cancer Therapeutics

International journal of biopharmaceutical sciences, 2020

Cancer is caused by a compilation of hereditary and environmental factors. In the past decade, next-generation sequencing has revealed the extent to which the microbiome influences the maintenance of homeostasis and therefore the prevention of diseases such as cancer. Current research efforts explore the interaction between cancer and the microbiome, and the results are anticipated to transform how clinicians approach cancer treatment. There is a plausible transition from the use of human genetic biomarkers to microbiomic biomarkers for genomic diagnostics. Considering the expanding knowledge of the ways in which the microbiome can affect the development of cancer, clinicians treating cancer patients should be considerate of how the microbiome can influence the host-drug or microbiome-cancer interactions. Recognition of the importance of the microbiome within the field of oncology is pertinent to understanding and furthering cancer development and treatment.

The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View

Trends in Cancer

Microbiomes impact on human health in many ways and likely impact on cancer progression and response to therapy. The effects of microbiomes on cancer may be direct or indirect. The interactions between microbiomes and cancerstwo complex systems on their ownrequire a systems biology approach. Treatments that alter microbiome composition of cancer patients are already under investigation in trials.

Unexpected guests in the tumor microenvironment: microbiome in cancer

Protein & Cell, 2020

Although intestinal microbiome have been established as an important biomarker and regulator of cancer development and therapeutic response, less is known about the role of microbiome at other body sites in cancer. Emerging evidence has revealed that the local microbiota make up an important part of the tumor microenvironment across many types of cancer, especially in cancers arising from mucosal sites, including the lung, skin and gastrointestinal tract. The populations of bacteria that reside specifically within tumors have been found to be tumor-type specific, and mechanistic studies have demonstrated that tumor-associated microbiota may directly regulate cancer initiation, progression and responses to chemo- or immuno-therapies. This review aims to provide a comprehensive review of the important literature on the microbiota in the cancerous tissue, and their function and mechanism of action in cancer development and treatment.

Roles of Microbiota in Cancer: From Tumor Development to Treatment

Journal of Oncology, 2022

Cancer as a second leading cause of death arises from multifactorial pathology. The association of microbiota and their products with various pathologic conditions including cancer is receiving significant attention over the past few years. Mounting evidence showed that human microbiota is an emerging target in tumor onset, progression, prevention, and even diagnosis. Accordingly, modulating this composition might influence the response to tumor therapy and therapeutic resistance as well. Through this review, one could conceive of complex interaction between the microbiome and cancer in either positive or negative manner by which may hold potential for finding novel preventive and therapeutic strategies against cancer.

The promise and challenge of cancer microbiome research

Genome Biology, 2020

Many microbial agents have been implicated as contributors to cancer genesis and development, and the search to identify and characterize new cancer-related organisms is ongoing. Modern developments in methodologies, especially culture-independent approaches, have accelerated and driven this research. Recent work has shed light on the multifaceted role that the community of organisms in and on the human body plays in cancer onset, development, detection, treatment, and outcome. Much remains to be discovered, however, as methodological variation and functional testing of statistical correlations need to be addressed for the field to advance.

Microbes and Cancer

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and sys-temically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue damage. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response , progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.

Cancer and the microbiome: potential applications as new tumor biomarker

Expert Review of Anticancer Therapy, 2014

Microbial communities that colonize in humans are collectively described as microbiome. According to conservative estimates, about 15% of all types of neoplasms are related to different infective agents. However, current knowledge is not sufficient to explain how the microbiome contributes to the growth and development of cancers. Large and thorough studies involving colonized, diverse and complex microbiome entities are required to identify microbiome as a potential cancer marker and to understand how the immune system is involved in response to pathogens. This article reviews the existing evidence supporting the enigmatic association of transformed microbiome with the development of cancer through the immunological modification. Ascertaining the connection between microbiome and immunological responses with risk of cancer may direct to explaining significant advances in the etiology of cancer, potentially disclosing a novel paradigm of research for the management and prevention of cancer.

Cancer and the gut microbiota: An unexpected link

Science translational medicine, 2015

Changes in the interactions among the gut microbiota, intestinal epithelium, and host immune system are associated with many diseases, including cancer. We discuss how environmental factors infuence this cross-talk during oncogenesis and tumor progression and how manipulations of the gut microbiota might improve the clinical activity of anticancer agents.

International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis

Gut

ObjectiveIn this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis.DesignInternational experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research.ResultsSome 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field.The panel considered that, despite mechanistic and supporting evidence from animal and human stu...