The ATPase cycle of Human Muscle Myosin II Isoforms: Adaptation of a single mechanochemical cycle for different physiological roles (original) (raw)

Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms

Biophysical journal, 2017

Modeling the complete actin.myosin ATPase cycle has always been limited by the lack of experimental data concerning key steps of the cycle, because these steps can only be defined at very low ionic strength. Here, using human β-cardiac myosin-S1, we combine published data from transient and steady-state kinetics to model a minimal eight-state ATPase cycle. The model illustrates the occupancy of each intermediate around the cycle and how the occupancy is altered by changes in actin concentration for [actin] = 1-20Km. The cycle can be used to predict the maximal velocity of contraction (by motility assay or sarcomeric shortening) at different actin concentrations (which is consistent with experimental velocity data) and predict the effect of a 5 pN load on a single motor. The same exercise was repeated for human α-cardiac myosin S1 and rabbit fast skeletal muscle S1. The data illustrates how the motor domain properties can alter the ATPase cycle and hence the occupancy of the key stat...

Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin

Proceedings of the National Academy of Sciences, 2006

During skeletal muscle contraction, regular arrays of actin and myosin filaments slide past each other driven by the cyclic ATP-dependent interaction of the motor protein myosin II (the cross-bridge) with actin. The rate of the cross-bridge cycle and its load-dependence, defining shortening velocity and energy consumption at the molecular level, vary widely among different isoforms of myosin II. However, the underlying mechanisms remain poorly understood. We have addressed this question by applying a single-molecule approach to rapidly ( approximately 300 mus) and precisely ( approximately 0.1 nm) detect acto-myosin interactions of two myosin isoforms having large differences in shortening velocity. We show that skeletal myosin propels actin filaments, performing its conformational change (working stroke) in two steps. The first step ( approximately 3.4-5.2 nm) occurs immediately after myosin binding and is followed by a smaller step ( approximately 1.0-1.3 nm), which occurs much faster in the fast myosin isoform than in the slow one, independently of ATP concentration. On the other hand, the rate of the second phase of the working stroke, from development of the latter step to dissociation of the acto-myosin complex, is very similar in the two isoforms and depends linearly on ATP concentration. The finding of a second mechanical event in the working stroke of skeletal muscle myosin provides the molecular basis for a simple model of actomyosin interaction. This model can account for the variation, in different fiber types, of the rate of the cross-bridge cycle and provides a common scheme for the chemo-mechanical transduction within the myosin family.

Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products

The Journal of Physiology, 2015

Muscle contraction is due to cyclical ATP-driven working strokes in the myosin motors while attached to the actin filament. Each working stroke is accompanied by the release of the hydrolysis products, orthophosphate and ADP. The rate of myosin-actin interactions increases with the increase in shortening velocity. r We used fast half-sarcomere mechanics on skinned muscle fibres to determine the relation between shortening velocity and the number and strain of myosin motors and the effect of orthophosphate concentration. r A model simulation of the myosin-actin reaction explains the results assuming that orthophosphate and then ADP are released with rates that increase as the motor progresses through the working stroke. The ADP release rate further increases by one order of magnitude with the rise of negative strain in the final motor conformation. r These results provide the molecular explanation of the relation between the rate of energy liberation and shortening velocity during muscle contraction.

The myosin converter domain modulates muscle performance

Nature Cell Biology, 2002

Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.

ATP Consumption and Efficiency of Human Single Muscle Fibers with Different Myosin Isoform Composition

Biophysical Journal, 2000

Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p 3 -1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12°C large variations (three-to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12°C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to ϳ0.4 when the temperature was raised from 12°C to 20°C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.