Regular paper Diversity of influenza-like illness etiology in Polish armed forces in influenza epidemic season (original) (raw)
Related papers
Diversity of influenza-like illness etiology in Polish Armed Forces in influenza epidemic season
Acta biochimica Polonica, 2014
The aim of this study was to conduct an epidemiological and laboratory surveillance of Influenza-Like Illnesses (ILI) in Polish Armed Forces, civilian military personnel and their families in 2011/2012 epidemic season, under the United States Department of Defense-Global Emerging Infections Surveillance and Response System (DoD-GEIS). ILI incidence data were analyzed in relation to age, gender, patient category as well as pathogen patterns. Multiple viral, bacterial and viral-bacterial co-infections were identified. Nose and throat swabs of active duty soldiers in the homeland country and in the NATO peacekeeping forces KFOR (Kosovo Force), as well as members of their families were tested for the presence of viral and bacterial pathogens. From October 2011 to May 2012, 416 specimens from ILI symptoms patients were collected and analyzed for the presence of viral and bacterial pathogens. Among viruses, coronavirus was the most commonly detected. In the case of bacterial infections, t...
Swiss Medical Weekly, 2013
QUESTION UNDER STUDY: Influenza is a viral infection caused by a pathogen with considerable ability for genetic mutation, which is responsible for seasonal outbreaks as well as pandemics. This article presents the results of epidemiological and virological monitoring of four successive influenza outbreaks in the French armed forces, for the period 2008 to 2012. METHODS: The main events monitored were acute respiratory infection (ARI). Weekly incidence rates were calculated by relating cases to the number of servicepersons monitored. RESULTS: In continental France, the incidence rates for ARI and for medical consultation attributable to influenza were highest during the pandemic and decreased to reach their lowest values in 2010-2011 and 2011-2012. In terms of virological results, the 2008-2009 outbreak was mainly due to the A(H3N2) virus, while the 2009-2010 pandemic and the following season saw the emergence of the A(H1N1) pdm09 strain. The last season 2011-2012 was characterised by a predominant circulation of A(H3N2) viruses. CONCLUSIONS: Despite some limitations, the MISS represents a good source of information about influenza in young people. Virological results are compatible with those reported by most other influenza surveillance networks, but could be improved by a better knowledge of the other respiratory viruses in circulation in the military community.
BMC Infectious Diseases, 2014
Background: Basic trainees in the US military have historically been vulnerable to respiratory infections. Adenovirus and influenza are the most common etiological agents responsible for febrile respiratory illness (FRI) among trainees and present with similar clinical signs and symptoms. Identifying demographic and clinical factors associated with the primary viral pathogens causing FRI epidemics among trainees will help improve differential diagnosis and allow for appropriate distribution of antiviral medications. The objective of this study was to determine what demographic and clinical factors are associated with influenza and adenovirus among military trainees. Methods: Specimens were systematically collected from military trainees meeting FRI case definition (fever ≥38.0°C with either cough or sore throat; or provider-diagnosed pneumonia) at eight basic training centers in the USA. PCR and/or cell culture testing for respiratory pathogens were performed on specimens. Interviewer-administered questionnaires collected information on patient demographic and clinical factors. Polychotomous logistic regression was employed to assess the association between these factors and FRI outcome categories: laboratory-confirmed adenovirus, influenza, or other FRI. Sensitivity, specificity, positive and negative predictive value were calculated for individual predictors and clinical combinations of predictors.
Microbial Ecology, 2010
Military recruits experience a high incidence of febrile respiratory illness (FRI), leading to significant morbidity and lost training time. Adenoviruses, group A Streptococcus pyogenes, and influenza virus are implicated in over half of the FRI cases reported at recruit training center clinics, while the etiology of the remaining cases is unclear. In this study, we explore the carriage rates and disease associations of adenovirus, enterovirus, rhinovirus, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis in military recruits using highdensity resequencing microarrays. The results showed that rhinoviruses, adenoviruses, S. pneumoniae, H. influenzae, and N. meningitidis were widely distributed in recruits. Of these five agents, only adenovirus showed significant correlation with illness. Among the samples tested, only pathogens associated with FRI, such as adenovirus 4 and enterovirus 68, revealed strong temporal and spatial clustering of specific strains, indicating that they are transmitted primarily within sites. The results showed a strong negative association between adenoviral FRI and the presence of rhinoviruses in recruits, suggesting some form of viral interference.
Respiratory Infections in the U.S. Military: Recent Experience and Control
Clinical microbiology reviews, 2015
This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influen...
PLoS ONE, 2013
Background: At the onset of an influenza pandemic, when the severity of a novel strain is still undetermined and there is a threat of introduction into a new environment, e.g., via the deployment of military troops, sensitive screening criteria and conservative isolation practices are generally recommended. Objectives: In response to elevated rates of influenza-like illness among U.S. military base camps in Kuwait, U.S. Naval Medical Research Unit No. 3 partnered with local U.S. Army medical units to conduct an A(H1N1) pdm09 outbreak investigation. Patients/Methods: Initial clinical data and nasal specimens were collected via the existent passive surveillance system and active surveillance was conducted using a modified version of the World Health Organization/U.S. Centers for Disease Control and Prevention influenza-like illness case definition [fever (T > 100.5˚F/38˚C) in addition to cough and/or sore throat in the previous 72 hours] as the screening criteria. Samples were tested via real-time reverse-transcription PCR and sequenced for comparison to global A(H1N1) pdm09 viruses from the same time period. Results: The screening criteria used in Kuwait proved insensitive, capturing only 16% of A(H1N1) pdm09-positive individuals. While still not ideal, using cough as the sole screening criteria would have increased sensitivity to 73%. Conclusions: The results of and lessons learned from this outbreak investigation suggest that pandemic influenza risk management should be a dynamic process (as information becomes available regarding true attack rates and associated mortality, screening and isolation criteria should be re-evaluated and revised as appropriate), and that military operational environments present unique challenges to influenza surveillance.
Outbreak, Surveillance, Investigation & Response (OSIR) Journal
On 1 Aug 2017, the Bureau of Epidemiology was notified that five conscripts from a single battalion unit in Chiang Mai Province presented with influenza-like illness (ILI) in two days. A joint investigation was performed to confirm the outbreak, describe the epidemiological characteristics, and identify the source of infection and risk factors. Active case finding was conducted, and either nasopharyngeal or throat swab from 11 patients were collected. Environment and activities in the unit were studied, and a retrospective cohort study was conducted. An influenza outbreak occurred in the new conscript unit during 17 Jul to 20 Aug 2017, with 40.6% attack rate. Major symptoms were fever (100%), cough (83.8%) and runny nose (75.0%). Out of 86 clinically diagnosed cases, 11 were laboratory confirmed. None developed pneumonia. Influenza A(H3N2) was identified in all 11 specimens tested by reverse transcription polymerase chain reaction. Basic reproductive number (R0) among conscripts in ...
BMC Infectious Diseases, 2015
Background: Febrile respiratory illness (FRI) results in substantial burden in semi-closed environments. Tackling risk factors may reduce transmission and infection. However, risk factors involved in one setting may not be generalizable in all settings due to differences in climate, residential environment, population genetic and cultural backgrounds. This study aims to identify risk factors of FRI and mono-viral infections in a tropical military environment. Methods: From year 2009 to 2012, military personnel with temperature ≥37.5°C, cough and/or sore throat, and personnel with no fever or no respiratory symptoms were recruited as cases and controls, respectively. Subjects provided nasal wash specimens and answered a standardized questionnaire. Resplex assays were used to determine the viral etiologies. Descriptive, univariate and multivariate analyses of the variables were performed using appropriate descriptive tests and logistic regression modelling, respectively, with R program. Results: A total of 7,743 FRI cases and 1,247 non-FRI study controls were recruited. Increasing age [adjusted odds ratio (AOR) = 1.03; 95 % confidence interval (CI) = 1.01-1.05], recruit camp (AOR = 4.67; 95 % CI = 3.99-5.46) and smoker (AOR = 1.31; 95 % CI = 1.13-1.52) were independent risk factors of FRI. Malay ethnicity was positively associated with influenza A(H1N1)pdm09 (AOR = 1.50; 95 % CI = 1.04-2.15) and coxsackie/echovirus (AOR = 1.67; 95 % CI = 1.19-2.36) mono-infection. Significant contact risk factors were stay-out personnel with ill household member (AOR = 4.96; 95 % CI = 3.39-7.24), and stay-in personnel with ill bunkmate and household member (AOR = 3.55; 95 % CI = 2.57-4.91). Staying in camp with none ill in bunk and at home was a protective factor against FRI (AOR = 0.80; 95 % CI = 0.64-0.99). These contact risk factors were similarly observed for the five most common viruses detected, namely adenovirus, rhinoviruses, influenza A and B, and coxsackie/echovirus. Conclusion: Increasing age, smoker, recruit-camp, stay-out personnel with ill household members and stay-in personnel with ill bunkmates were independent risk factors of FRI in a semi-closed military environment. Early identification and isolation of ill personnel from their bunk may be effective to prevent and reduce transmission and disease burden.