Putative Role of Respiratory Muscle Training to Improve Endurance Performance in Hypoxia: A Review (original) (raw)

Abstract

Respiratory/inspiratory muscle training (RMT/IMT) has been proposed to improve the endurance performance of athletes in normoxia. In recent years, due to the increased use of hypoxic training method among athletes, the RMT applicability has also been tested as a method to minimize adverse effects since hyperventilation may cause respiratory muscle fatigue during prolonged exercise in hypoxia. We performed a review in order to determine factors potentially affecting the change in endurance performance in hypoxia after RMT in healthy subjects. A comprehensive search was done in the electronic databases MEDLINE and Google Scholar including keywords: "RMT/IMT," and/or "endurance performance," and/or "altitude" and/or "hypoxia." Seven appropriate studies were found until April 2018. Analysis of the studies showed that two RMT methods were used in the protocols: respiratory muscle endurance (RME) (isocapnic hyperpnea: commonly 10-30 ′ , 3-5 d/week) in three of the seven studies, and respiratory muscle strength (RMS) (Powerbreathe device: commonly 2 × 30 reps at 50% MIP (maximal inspiratory pressure), 5-7 d/week) in the remaining four studies. The duration of the protocols ranged from 4 to 8 weeks, and it was found in synthesis that during exercise in hypoxia, RMT promoted (1) reduced respiratory muscle fatigue, (2) delayed respiratory muscle metaboreflex activation, (3) better maintenance of SaO 2 and blood flow to locomotor muscles. In general, no increases of maximal oxygen uptake (VO 2max ) were described. Ventilatory function improvements (maximal inspiratory pressure) achieved by using RMT fostered the capacity to adapt to hypoxia and minimized the impact of respiratory stress during the acclimatization stage in comparison with placebo/sham. In conclusion, RMT was found to elicit general positive effects mainly on respiratory efficiency and breathing patterns, lower dyspneic perceptions and improved physical performance in conditions of hypoxia. Thus, this method is recommended to be used as a pre-exposure tool for strengthening respiratory muscles and minimizing the adverse effects caused by hypoxia related hyperventilation. Future studies will assess these effects in elite athletes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (127)

  1. Aaron, E. A., Seow, K. C., Johnson, B. D., and Dempsey, J. A. (1992). Oxygen cost of exercise hyperpnea: implications for performance. J. Appl. Physiol. 72, 1818-1825. doi: 10.1152/jappl.1992.72.5.1818
  2. Álvarez-Herms, J., Julià-Sánchez, S., Gatterer, H., Blank, C., Corbi, F., Pagès, T., et al. (2016). Anaerobic training in hypoxia: a new approach to stimulate the rating of effort perception. Physiol. Behav. 163, 37-42. doi: 10.1016/j.physbeh.2016.04.035
  3. Álvarez-Herms, J., Julià-Sánchez, S., Hamlin, M. J., Corbi, F., Pagès, T., and Viscor, G. (2015). Popularity of hypoxic training methods for endurance- based professional and amateur athletes. Physiol. Behav. 143, 35-38. doi: 10.1016/j.physbeh.2015.02.020
  4. Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., and Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J. Physiol. 575(Pt. 3), 937-952. doi: 10.1113/jphysiol.2006.113936
  5. Amann, M., and Kayser, B. (2009). Nervous system function during exercise in hypoxia. High Alt. Med. Biol. 10, 149-164. doi: 10.1089/ham.2008.1105
  6. Babcock, M. A., Johnson, B. D., Pegelow, D. F., Suman, O. E., Griffin, D., and Dempsey, J. A. (1995). Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J. Appl. Physiol. 78, 82-92. doi: 10.1152/jappl.1995.78.1.82
  7. Bailey, D. M., Davies, B., Romer, L., Castell, L., Newsholme, E., and Gandy, G. (1998). Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur. J. Appl. Physiol. Occup. Physiol. 78, 360-368. doi: 10.1007/s004210050432
  8. Bärtsch, P., and Gibbs, J. S. (2007). Effect of altitude on the heart and the lungs. Circulation 116, 2191-2202. doi: 10.1161/CIRCULATIONAHA.106.650796
  9. Bassett, D. R., and Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32, 70-84. doi: 10.1097/00005768-200001000-00012
  10. Bender, P. R., McCullough, R. E., McCullough, R. G., Huang, S. Y., Wagner, P. D., Cymerman, A., et al. (1989). Increased exercise SaO2 independent of ventilatory acclimatization at 4,300 m. J. Appl. Physiol. 66, 2733-2738. doi: 10.1152/jappl.1989.66.6.2733
  11. Bernardi, E., Melloni, E., Mandolesi, G., Uliari, S., Grazzi, G., and Cogo, A. (2014). Respiratory muscle endurance training improves breathing pattern in triathletes. Ann. Sport Med. Res. 1, 1-7. doi: 10.1183/13993003.congress-2015.PA2227
  12. Bernardi, L., Gabutti, A., Porta, C., and Spicuzza, L. (2001a). Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J. Hypertens. 19, 2221-2229. doi: 10.1097/00004872-200112000-00016
  13. Bernardi, L., Passino, C., Serebrovskaya, Z., Serebrovskaya, T., and Appenzeller, O. (2001b). Respiratory and cardiovascular adaptations to progressive hypoxia; effect of interval hypoxic training. Eur. Heart J. 22, 879-886. doi: 10.1053/euhj.2000.2466
  14. Bernardi, L., Schneider, A., Pomidori, L., Paolucci, E., and Cogo, A. (2006). Hypoxic ventilatory response in successful extreme altitude climbers. Eur. Respir. J. 27, 165-171. doi: 10.1183/09031936.06.00015805
  15. Bindslev, L., Jolin, C., Santesson, J., and Gottlieb, I. (1985). Hypoxic pulmonary vasoconstriction in man: effects of hyperventilation. Acta Anaesthesiol. Scand. 29, 547-551. doi: 10.1111/j.1399-6576.1985.tb02251.x
  16. Bonetti, D. L., and Hopkins, W. G. (2009). Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 39, 107-127. doi: 10.2165/00007256-200939020-00002
  17. Brown, P. I., Sharpe, G. R., and Johnson, M. A. (2010). Loading of trained inspiratory muscles speeds lactate recovery kinetics. Med. Sci. Sports Exerc. 42, 1103-1112. doi: 10.1249/MSS.0b013e3181c658ac
  18. Brown, P. I., Sharpe, G. R., and Johnson, M. A. (2012). Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise. Eur. J. Appl. Physiol. 112, 2117-2129. doi: 10.1007/s00421-011-2185-8
  19. Burtscher, M., Faulhaber, M., Flatz, M., Likar, R., and Nachbauer, W. (2006). Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int. J. Sports Med. 27, 629-635. doi: 10.1055/s-2005-872823
  20. Chapman, R., and Emery, M. (1999). Degree of arterial desaturation in normoxia influences VO 2max decline in mild hypoxia. Med. Sci.Sport Exerc. 658-663.
  21. Clark, J. M., Hagerman, F. C., and Gelfand, R. (1983). Breathing patterns during submaximal and maximal exercise in elite oarsmen. J. Appl. Physiol. 55, 440-446. doi: 10.1152/jappl.1983.55.2.440
  22. Coast, J. R., Clifford, P. S., Henrich, T. W., Stray-Gundersen, J., and Johnson, R. L. (1990). Maximal inspiratory pressure following maximal exercise in trained and untrained subjects. Med. Sci. Sports Exerc. 22, 811-815. doi: 10.1249/00005768-199012000-00013
  23. Debevec, T., and Mekjavic, I. B. (2012). Short intermittent hypoxic exposures augment ventilation but do not alter regional cerebral and muscle oxygenation during hypoxic exercise. Respir. Physiol. Neurobiol. 181, 132-142. doi: 10.1016/j.resp.2012.02.008
  24. Dempsey, J. A., Amann, M., Romer, L. M., and Miller, J. D. (2008). Respiratory system determinants of peripheral fatigue and endurance performance. Med. Sci. Sports Exerc. 40, 457-461. doi: 10.1249/MSS.0b013e31815f8957
  25. Dempsey, J. A., Forster, H. V., Birnbaum, M. L., Reddan, W. G., Thoden, J., Grover, R. F., et al. (1972). Control of exercise hyperpnea under varying durations of exposure to moderate hypoxia. Respir. Physiol. 16, 213-231. doi: 10.1016/0034-5687(72)90052-7
  26. Dempsey, J. A., and Morgan, B. J. (2015). Humans in hypoxia: a conspiracy of maladaptation?! Physiology. 30, 304-316. doi: 10.1152/physiol.00007.2015
  27. Dempsey, J. A., Powell, F. L., Bisgard, G. E., Blain, G. M., Poulin, M. J., Smith, C., et al. (2014). Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J. Appl. Physiol. 116, 858-866. doi: 10.1152/japplphysiol.01126.2013
  28. Dempsey, J. A., Romer, L., Rodman, J., Miller, J., and Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 151, 242-250. doi: 10.1016/j.resp.2005.12.015
  29. Di Prampero, P. E. (1985). Metabolic and circulatory limitations to VO2 max at the whole animal level. J. Exp. Biol.. 115, 319-331.
  30. Di Prampero, P. E., and Ferretti, G. (1990). Factors limiting maximal oxygen consumption in humans. Respir. Physiol. 80, 113-127. doi: 10.1016/0034-5687(90)90075-A
  31. Downey, A. E., Chenoweth, L. M., Townsend, D. K., Ranum, J. D., Ferguson, C. S., and Harms, C. A. (2007). Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir. Physiol. Neurobiol. 156, 137-146. doi: 10.1016/j.resp.2006.08.006
  32. Edwards, A. M., and Walker, R. E. (2009). Inspiratory muscle training and endurance: a central metabolic control perspective. Int. J. Sports Physiol. Perform. 4, 122-8. doi: 10.1123/ijspp.4.1.122
  33. Edwards, A. M., Wells, C., and Butterly, R. (2008). Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. Br. J. Sports Med. 42, 523-527. doi: 10.1136/bjsm.2007.045377
  34. Esposito, F., Limonta, E., Alberti, G., Veicsteinas, A., and Ferretti, G. (2010). Effect of respiratory muscle training on maximum aerobic power in normoxia and hypoxia. Respir. Physiol. Neurobiol. 170, 268-272. doi: 10.1016/j.resp.2010.02.004
  35. Fairbarn, M. S., Coutts, K. C., Pardy, R. L., and McKenzie, D. C. (1991). Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int. J. Sports Med. 12, 66-70. doi: 10.1055/s,- 2007-1024658
  36. Fitting, J. W. (1991). Respiratory muscle fatigue limiting physical exercise? Eur Respir. J. 4, 103-108.
  37. Flenley, D. C., Brash, H., Clancy, L., Cooke, N. J., Leitch, A. G., Middleton, W., et al. (1979). Ventilatory response to steady-state exercise in hypoxia in humans. J. Appl. Physiol. 46, 438-446. doi: 10.1152/jappl.1979.46.3.438
  38. Fulco, C. S., Rock, P. B., and Cymerman, A. (1998). Maximal and submaximal exercise performance at altitude. Aviat. Space Environ. Med. 69, 793-801.
  39. Gandevia, S. C. (1988). Neural mechanisms underlying the sensation of breathlessness: kinesthetic parallels between respiratory and limb muscles. Aust. N. Z. J. Med. 18, 83-91. doi: 10.1111/j.1445-5994.1988.tb02252.x
  40. Gething, A. D., Williams, M., and Davies, B. (2004). Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br. J. Sports Med. 38, 730-736. doi: 10.1136/bjsm.2003.007518
  41. Ghofrani, H. A., Reichenberger, F., Kohstall, M. G., Mrosek, E. H., Seeger, T., Olschewski, H., et al. (2004). Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med. 141, 169-177. doi: 10.7326/0003-4819-141-3-200408030-00005
  42. González-Montesinos, J. L., Vaz Pardal, C., Fernández Santos, J. R., Arnedillo Muñoz, A., Costa Sepúlveda, J. L., and Gómez Espinosa de los Monteros, R. (2012). Efectos del entrenamiento de la musculatura respiratoria sobre el rendimiento. Revisión bibliográfica. Rev. Andaluza Med. Deport. 5, 163-170. doi: 10.1016/S1888-7546(12)70025-4
  43. Green, H. J., Sutton, J. R., Wolfel, E. E., Reeves, J. T., Butterfield, G. E., and Brooks, G. A. (1992). Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise. J. Appl. Physiol. 73, 2701-2708. doi: 10.1152/jappl.1992.73.6.2701
  44. Gudjonsdottir, M., Appendini, L., Baderna, P., Purro, A., Patessio, A., Vilianis, G., et al. (2001). Diaphragm fatigue during exercise at high altitude: the role of hypoxia and workload. Eur. Respir. J. 17, 674-680. doi: 10.1183/09031936.01.17406740
  45. Guenette, J. A., Martens, A. M., Lee, A. L., Tyler, G. D., Richards, J. C., Foster, G. E., et al. (2006). Variable effects of respiratory muscle training on cycle exercise performance in men and women. Appl. Physiol. Nutr. Metab. 31, 159-166. doi: 10.1139/h05-016
  46. Hanel, B., and Secher, N. H. (1991). Maximal oxygen uptake and work capacity after inspiratory muscle training: a controlled study. J. Sports Sci. 9, 43-52. doi: 10.1080/02640419108729854
  47. Hansen, J., Sander, M., Hald, C. F., Victor, R. G., and Thomas, G. D. (2000). Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J. Physiol. 527, 387-396. doi: 10.1111/j.1469-7793.2000.00387.x
  48. Harms, C. A. (2007). Insights into the role of the respiratory muscle metaboreflex. J. Physiol. 584:711. doi: 10.1113/jphysiol.2007.145540
  49. Harms, C. A., Babcock, M. A., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., et al. (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 82, 1573-1583. doi: 10.1152/jappl.1997.82.5.1573
  50. Harms, C. A., Wetter, T. J., McClaran, S. R., Pegelow, D. F., Nickele, G., Nelson, W. B., et al. (1998). Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J. Appl. Physiol. 85, 609-618. doi: 10.1152/jappl.1998.85.2.609
  51. Harms, C. A., Wetter, T. J., St Croix, C. M., Pegelow, D. F., and Dempsey, J. A. (2000). Effects of respiratory muscle work on exercise performance. J. Appl. Physiol. 89, 131-138. doi: 10.1152/jappl.2000.89.1.131
  52. Helfer, S., Quackenbush, J., Fletcher, M., and Pendergast, D. R. (2016). Respiratory muscle training and exercise endurance at altitude. Aerosp. Med. Hum. Perform. 87, 704-711. doi: 10.3357/AMHP.4405.2016
  53. Hellyer, N. J., Folsom, I. A., Gaz, D. V., Kakuk, A. C., Mack, J. L., and Ver Mulm, J. A. (2015). Respiratory muscle activity during simultaneous stationary cycling and inspiratory muscle training. J. Strength Cond. Res. 29, 3517-3522. doi: 10.1097/JSC.0000000000000238
  54. Holm, P., Sattler, A., and Fregosi, R. F. (2004). Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 4:9. doi: 10.1186/1472-6793-4-9
  55. Illi, S. K., Held, U., Frank, I., and Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med. 42, 707-24. doi: 10.1007/BF032 62290
  56. Jaoude, P. A., Porhomayon, J., and El Solh, A. A. (2012). "Effects of obesity on respiratory physiology, " in Critical Care Management of the Obese Patient, ed A. A. El Solh (Chichester: Wiley-Blackwell, Ltd.), 13-20.
  57. Johnson, B. D., Babcock, M. A., Suman, O. E., and Dempsey, J. A. (1993). Exercise- induced diaphragmatic fatigue in healthy humans. J. Physiol. 460, 385-405. doi: 10.1113/jphysiol.1993.sp019477
  58. Johnson, M. A., Sharpe, G. R., and Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur. J. Appl. Physiol. 101, 761-770. doi: 10.1007/s00421-007-0551-3
  59. Katayama, K., Goto, K., Ishida, K., and Ogita, F. (2010). Substrate utilization during exercise and recovery at moderate altitude. Metab. Clin. Exp. 59, 959-966. doi: 10.1016/j.metabol.2009.10.017
  60. Kayser, B. (2003). Exercise starts and ends in the brain. Eur. J. Appl. Physiol. 90, 411-9. doi: 10.1007/s00421-003-0902-7
  61. Kayser, B. (2009). Disentangling hypoxia and hypobaria. Respir. Physiol. Neurobiol. 169, 338-339. doi: 10.1016/j.resp.2009.09.010
  62. Kayser, B., Narici, M., Binzoni, T., Grassi, B., and Cerretelli, P. (1994). Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J. Appl. Physiol. 76, 634-640. doi: 10.1152/jappl.1994.76.2.634
  63. Keramidas, M. E., Kounalakis, S. N., and Mekjavic, I. B. (2011). Aerobic exercise training preceded by respiratory muscle endurance training: a synergistic action enhances the hypoxic aerobic capacity. Eur. J. Appl. Physiol. 111, 2629-2630. doi: 10.1007/s00421-011-1887-2
  64. Keyl, C., Schneider, A., Gamboa, A., Spicuzza, L., Casiraghi, N., Mori, A., et al. (2003). Autonomic cardiovascular function in high-altitude Andean natives with chronic mountain sickness. J. Appl. Physiol. 94, 213-219. doi: 10.1152/japplphysiol.01258.2001
  65. Kleinsasser, A., Von Goedecke, A., Hoermann, C., Maier, S., Schaefer, A., Keller, C., et al. (2004). Proportional assist ventilation reduces the work of breathing during exercise at moderate altitude. High Alt. Med. Biol. 5, 420-428. doi: 10.1089/ham.2004.5.420
  66. Lahiri, S., Kao, F. F., Velasquez, T., Martinez, C., and Pezzia, W. (1970). Respiration of man during exercise at high altitude: highlander vs. lowlander. Respir. Physiol. 8, 361-375. doi: 10.1016/0034-5687(70)90043-5
  67. Leddy, J. J., Limprasertkul, A., Patel, S., Modlich, F., Buyea, C., Pendergast, D. R., et al. (2007). Isocapnic hyperpnea training improves performance in competitive male runners. Eur. J. Appl. Physiol. 99, 665-676. doi: 10.1007/s00421-006-0390-7
  68. Leith, D. E., and Bradley, M. (1976). Ventilatory muscle strength and endurance training. J. Appl. Physiol. 41, 508-516. doi: 10.1152/jappl.1976.41.4.508
  69. Levine, B. D., and Stray-Gundersen, J. (2001). The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise. Adv. Exp. Med. Biol. 502, 75-88. doi: 10.1007/978-1-4757-3401-0_7
  70. Loeppky, J. A., Roach, R. C., Maes, D., Hinghofer-Szalkay, H., Roessler, A., Gates, L., et al. (2005). Role of hypobaria in fluid balance response to hypoxia. High Alt. Med. Biol. 6, 60-71. doi: 10.1089/ham.2005.6.60
  71. Lomax, M. (2010). Inspiratory muscle training, altitude, and arterial oxygen desaturation: a preliminary investigation. Aviat. Space Environ. Med. 81, 498-501. doi: 10.3357/ASEM.2718.2010
  72. Lomax, M., Massey, H. C., and House, J. R. (2017). Inspiratory muscle training effects on cycling during acute hypoxic exposure. Aerosp. Med. Hum. Perform. 88, 544-549. doi: 10.3357/AMHP.4780.2017
  73. Luciá, A., Hoyos, J., Carvajal, A., and Chicharro, J. L. (1999). Heart rate response to professional road cycling: the Tour de France. Int. J. Sports Med. 20, 167-172. doi: 10.1055/s-2007-971112
  74. Lucia, A., Hoyos, J., and Chicharro, J. L. (2001). Physiology of professional road cycling. Sports Med. 31, 325-337. doi: 10.2165/00007256-200131050-00004
  75. Lyons, T. P., Muza, S. R., Rock, P. B., and Cymerman, A. (1995). The effect of altitude pre-acclimatization on acute mountain sickness during reexposure. Aviat. Space Environ. Med. 66, 957-962.
  76. Markov, G., Spengler, C. M., Knöpfli-Lenzin, C., Stuessi, C., and Boutellier, U. (2001). Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur. J. Appl. Physiol. 85, 233-239. doi: 10.1007/s004210100450
  77. Martin, B. J., and Weil, J. V. (1979). CO2 and exercise tidal volume. J. Appl. Physiol. 46, 322-325. doi: 10.1152/jappl.1979.46.2.322
  78. Martin, T. R., Castile, R. G., Fredberg, J. J., Wohl, M. E., and Mead, J. (1987). Airway size is related to sex but not lung size in normal adults. J. Appl. Physiol. 63, 2042-2047. doi: 10.1152/jappl.1987.63.5.2042
  79. Mazzeo, R. S. (2008). Physiological responses to exercise at altitude : an update. Sports Med. 38, 1-8. doi: 10.2165/00007256-200838010-00001
  80. McConnell, A. K., and Romer, L. M. (2004). Respiratory muscle training in healthy humans: resolving the controversy. Int. J. Sport Med. 25, 284-293. doi: 10.1055/s-2004-815827
  81. McConnell, A. K., and Sharpe, G. R. (2005). The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration. Eur. J. Appl. Physiol. 94, 277-284. doi: 10.1007/s00421-004-1282-3
  82. Millet, G. P., Roels, B., Schmitt, L., Woorons, X., and Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Med. 40, 1-25. doi: 10.2165/11317920-000000000-00000
  83. Morgan, D. W., Kohrt, W. M., Bates, B. J., and Skinner, J. S. (1987). Effects of respiratory muscle endurance training on ventilatory and endurance performance of moderately trained cyclists. Int. J. Sports Med. 8, 88-93. doi: 10.1055/s-2008-1025647
  84. Moudgil, R., Michelakis, E. D., and Archer, S. L. (2005). Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 98, 390-403. doi: 10.1152/japplphysiol.00733.2004
  85. Naimark, A., and Cherniack, R. M. (1960). Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15, 377-382. doi: 10.1152/jappl.1960.15.3.377
  86. Nicola, A., Marcora, S. M., and Sacchetti, M. (2016). Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J. Sports Sci. 34, 1199-1206. doi: 10.1080/02640414.2015.1102315
  87. Noakes, T. D. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sports. 10, 123-145. doi: 10.1034/j.1600-0838.2000.010003123.x
  88. Noakes, T. D. (2004). Linear relationship between the perception of effort and the duration of constant load exercise that remains. J. Appl. Physiol. 96, 1571-1573. doi: 10.1152/japplphysiol.01124.2003
  89. Noakes, T. D., St Clair Gibson, A., and Lambert, E. V. (2005). From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br. J. Sports Med. 39, 120-124. doi: 10.1136/bjsm.2003.010330
  90. Nummela, A., and Rusko, H. (2000). Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J. Sports Sci. 18, 411-419. doi: 10.1080/02640410050074340
  91. O'Donnell, D. E., D'Arsigny, C., Raj, S., Abdollah, H., and Webb, K. A. (1999). Ventilatory assistance improves exercise endurance in stable congestive heart failure. Am. J. Respir. Crit. Care Med. 160, 1804-1811.
  92. Oren, A., Wasserman, K., Davis, J. A., and Whipp, B. J. (1981). Effect of CO2 set point on ventilatory response to exercise. J. Appl. Physiol. 51, 185-189. doi: 10.1152/jappl.1981.51.1.185
  93. Parameswaran, K., Todd, D. C., and Soth, M. (2006). Altered respiratory physiology in obesity. Can. Respir. J. 13, 203-210. doi: 10.1155/2006/834786
  94. Powers, S. K., Lawler, J., Dempsey, J. A., Dodd, S., and Landry, G. (1989). Effects of incomplete pulmonary gas exchange on VO2max. J. Appl. Physiol. 66, 2491-2495. doi: 10.1152/jappl.1989.66.6.2491
  95. Quackenbush, J., Duquin, A., Helfer, S., and Pendergast, D. R. (2016). Respiratory muscle training and cognitive function exercising at altitude. Aerosp. Med. Hum. Perform. 87, 18-25. doi: 10.3357/AMHP.4420.2016
  96. Rausch, S. M., Whipp, B. J., Wasserman, K., and Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J. Physiol. 444, 567-578. doi: 10.1113/jphysiol.1991.sp018894
  97. Ricart, A., Casas, H., Casas, M., Pages, T., Palacios, L., Rama, R., et al. (2000). Acclimatization near home? Early respiratory changes after short- term intermittent exposure to simulated altitude. Wilderness Environ. Med. 11, 84-88. doi: 10.1580/1080-6032(2000)011[0084:ANHERC]2.3.CO;
  98. Richalet, J. P., Gratadour, P., Robach, P., Pham, I., Déchaux, M., Joncquiert- Latarjet, A., et al. (2005). Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am. J. Respir. Crit. Care Med. 171, 275-281. doi: 10.1164/rccm.200406-804OC
  99. Richalet, J. P., Larmignat, P., Poitrine, E., Letournel, M., and Canouï-Poitrine, F. (2012). Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am. J. Respir. Crit. Care Med. 185, 192-198. doi: 10.1164/rccm.201108-1396OC
  100. Romer, L. M., Dempsey, J. A., Lovering, A., and Eldridge, M. (2006). Exercise- induced arterial hypoxemia: consequences for locomotor muscle fatigue. Adv. Exp. Med. Biol. 588, 47-55. doi: 10.1007/978-0-387-34817-9_5
  101. Romer, L. M., McConnell, A. K., and Jones, D. A. (2002a). Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. Int. J. Sports Med. 23, 353-360. doi: 10.1055/s-2002-33143
  102. Romer, L. M., McConnell, A. K., and Jones, D. A. (2002b). Effects of inspiratory muscle training on time-trial performance in trained cyclists. J. Sports Sci. 20, 547-562. doi: 10.1080/026404102760000053
  103. Romer, L. M., and Polkey, M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. J. Appl. Physiol. 104, 879-888. doi: 10.1152/japplphysiol.01157.2007
  104. Rusko, H. K., Tikkanen, H. O., and Peltonen, J. E. (2004). Altitude and endurance training. J. Sports Sci. 22, 928-44; discussion: 945. doi: 10.1080/02640410400005933
  105. Salazar-Martínez, E., Gatterer, H., Burtscher, M., Orellana, J. N., and Santalla, A. (2017). Influence of inspiratory muscle training on ventilatory efficiency and cycling performance in normoxia and hypoxia. Front. Physiol. 8:00133. doi: 10.3389/fphys.2017.00133
  106. Sales, A. T., Fregonezi, G. A., Ramsook, A. H., Guenette, J. A., Lima, I. N., and Reid, W. D. (2016). Respiratory muscle endurance after training in athletes and non- athletes: a systematic review and meta-analysis. Phys. Ther. Sport 17, 76-86. doi: 10.1016/j.ptsp.2015.08.001
  107. San Martin, R., Brito, J., Siques, P., and León-Velarde, F. (2017). Obesity as a conditioning factor for high-altitude diseases. Obes. Facts 10, 363-372. doi: 10.1159/000477461
  108. Saunders, P. U., Pyne, D. B., and Gore, C. J. (2009). Endurance training at altitude. High Alt. Med. Biol. 10, 135-148. doi: 10.1089/ham.2008.1092
  109. Savourey, G., Launay, J. C., Besnard, Y., Guinet, A., and Travers, S. (2003). Normo- and hypobaric hypoxia: are there any physiological differences? Eur. J. Appl. Physiol. 89, 122-126. doi: 10.1007/s00421-002-0789-8
  110. Schoene, R. B. (2001). Limits of human lung function at high altitude. J. Exp. Biol. 204, 3121-3127. Available online at: http://jeb.biologists.org/content/204/18/ 3121.article-info
  111. Seals, D. R. (2001). Robin Hood for the lungs? a respiratory metaboreflex that "steals" blood flow from locomotor muscles. J. Physiol. 537:2. doi: 10.1111/j.1469-7793.2001.0002k.x
  112. Somers, V. K., Mark, A. L., and Abboud, F. M. (1991). Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J. Clin. Invest. 87, 1953-1957. doi: 10.1172/JCI115221
  113. Sonetti, D. A., Wetter, T. J., Pegelow, D. F., and Dempsey, J. A. (2001). Effects of respiratory muscle training vs. placebo on endurance exercise performance. Respir. Physiol. 127, 185-199. doi: 10.1016/S0034-5687(01) 00250-X St Clair Gibson, A., Lambert, E. V., Rauch, L. H. G., Tucker, R., Baden, D. A., Foster, C., et al. (2006). The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 36, 705-22. doi: 10.2165/00007256-200636080-00006
  114. Stuber, T., Sartori, C., Salinas Salmòn, C., Hutter, D., Thalmann, S., Turini, P., et al. (2008). Respiratory nitric oxide and pulmonary artery pressure in children of aymara and European ancestry at high altitude. Chest 134, 996-1000. doi: 10.1378/chest.08-0854
  115. Stuessi, C., Spengler, C. M., Knöpfli-Lenzin, C., Markov, G., and Boutellier, U. (2001). Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. Eur. J. Appl. Physiol. 84, 582-586. doi: 10.1007/s004210100408
  116. Suzuki, S., Sato, M., and Okubo, T. (1995). Expiratory muscle training and sensation of respiratory effort during exercise in normal subjects. Thorax 50, 366-370. doi: 10.1136/thx.50.4.366
  117. Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., et al. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Appl. Physiol. Nutr. Metab. 33, 671-681. doi: 10.1139/H08-050
  118. Verges, S., Bachasson, D., and Wuyam, B. (2010). Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir. Res. 11:109. doi: 10.1186/1465-9921-11-109
  119. Vogiatzis, I., Georgiadou, O., Koskolou, M., Athanasopoulos, D., Kostikas, K., Golemati, S., et al. (2007). Effects of hypoxia on diaphragmatic fatigue in highly trained athletes. J. Physiol. 581, 299-308. doi: 10.1113/jphysiol.2006. 126136
  120. Volianitis, S., Mcconnell, A. K., Koutedakis, Y., Mcnaughton, L., Backx, K., Jones, D., et al. (2001). Inspiratory muscle training improves rowing performance. Phys. Fit Perform. 33, 803-809. doi: 10.1097/00005768-200105000-00020
  121. Wagner, P. D. (2000). Reduced maximal cardiac output at altitude - Mechanisms and significance. Respir. Physiol. 120, 1-11. doi: 10.1016/S0034- 5687(99)00101-2
  122. Waldrop, T. G., Eldridge, F. L., Iwamoto, G., and Mitchell, J. H. (2011). Central neural control of respiration and circulation during exercise. Compr. Physiol. 333-80. doi: 10.1002/cphy.cp120109
  123. Wells, G. D., Plyley, M., Thomas, S., Goodman, L., and Duffin, J. (2005). Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur. J. Appl. Physiol. 94, 527-540. doi: 10.1007/s00421-005-1375-7
  124. West, J. B. (2000). Human limits for hypoxia. The physiological challenge of climbing Mt. Everest. Ann. N. Y. Acad. Sci. 899, 15-27. doi: 10.1111/j.1749-6632.2000.tb06173.x
  125. Witt, J. D., Guenette, J. A., Rupert, J. L., McKenzie, D. C., and Sheel, A. W. (2007). Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J. Physiol. 584, 1019-1028. doi: 10.1113/jphysiol.2007.140855
  126. Xing, G., Qualls, C., Huicho, L., Rivera-Ch, M., Stobdan, T., Slessarev, M., et al. (2008). Adaptation and mal-adaptation to ambient hypoxia;
  127. Andean, Ethiopian and Himalayan patterns. PLoS ONE 3:e2342. doi: 10.1371/annotation/aba20dc1-b10d-464c-9671-c47b956d1718