Putative Role of Respiratory Muscle Training to Improve Endurance Performance in Hypoxia: A Review (original) (raw)
Abstract
Respiratory/inspiratory muscle training (RMT/IMT) has been proposed to improve the endurance performance of athletes in normoxia. In recent years, due to the increased use of hypoxic training method among athletes, the RMT applicability has also been tested as a method to minimize adverse effects since hyperventilation may cause respiratory muscle fatigue during prolonged exercise in hypoxia. We performed a review in order to determine factors potentially affecting the change in endurance performance in hypoxia after RMT in healthy subjects. A comprehensive search was done in the electronic databases MEDLINE and Google Scholar including keywords: "RMT/IMT," and/or "endurance performance," and/or "altitude" and/or "hypoxia." Seven appropriate studies were found until April 2018. Analysis of the studies showed that two RMT methods were used in the protocols: respiratory muscle endurance (RME) (isocapnic hyperpnea: commonly 10-30 ′ , 3-5 d/week) in three of the seven studies, and respiratory muscle strength (RMS) (Powerbreathe device: commonly 2 × 30 reps at 50% MIP (maximal inspiratory pressure), 5-7 d/week) in the remaining four studies. The duration of the protocols ranged from 4 to 8 weeks, and it was found in synthesis that during exercise in hypoxia, RMT promoted (1) reduced respiratory muscle fatigue, (2) delayed respiratory muscle metaboreflex activation, (3) better maintenance of SaO 2 and blood flow to locomotor muscles. In general, no increases of maximal oxygen uptake (VO 2max ) were described. Ventilatory function improvements (maximal inspiratory pressure) achieved by using RMT fostered the capacity to adapt to hypoxia and minimized the impact of respiratory stress during the acclimatization stage in comparison with placebo/sham. In conclusion, RMT was found to elicit general positive effects mainly on respiratory efficiency and breathing patterns, lower dyspneic perceptions and improved physical performance in conditions of hypoxia. Thus, this method is recommended to be used as a pre-exposure tool for strengthening respiratory muscles and minimizing the adverse effects caused by hypoxia related hyperventilation. Future studies will assess these effects in elite athletes.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (127)
- Aaron, E. A., Seow, K. C., Johnson, B. D., and Dempsey, J. A. (1992). Oxygen cost of exercise hyperpnea: implications for performance. J. Appl. Physiol. 72, 1818-1825. doi: 10.1152/jappl.1992.72.5.1818
- Álvarez-Herms, J., Julià-Sánchez, S., Gatterer, H., Blank, C., Corbi, F., Pagès, T., et al. (2016). Anaerobic training in hypoxia: a new approach to stimulate the rating of effort perception. Physiol. Behav. 163, 37-42. doi: 10.1016/j.physbeh.2016.04.035
- Álvarez-Herms, J., Julià-Sánchez, S., Hamlin, M. J., Corbi, F., Pagès, T., and Viscor, G. (2015). Popularity of hypoxic training methods for endurance- based professional and amateur athletes. Physiol. Behav. 143, 35-38. doi: 10.1016/j.physbeh.2015.02.020
- Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., and Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J. Physiol. 575(Pt. 3), 937-952. doi: 10.1113/jphysiol.2006.113936
- Amann, M., and Kayser, B. (2009). Nervous system function during exercise in hypoxia. High Alt. Med. Biol. 10, 149-164. doi: 10.1089/ham.2008.1105
- Babcock, M. A., Johnson, B. D., Pegelow, D. F., Suman, O. E., Griffin, D., and Dempsey, J. A. (1995). Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J. Appl. Physiol. 78, 82-92. doi: 10.1152/jappl.1995.78.1.82
- Bailey, D. M., Davies, B., Romer, L., Castell, L., Newsholme, E., and Gandy, G. (1998). Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur. J. Appl. Physiol. Occup. Physiol. 78, 360-368. doi: 10.1007/s004210050432
- Bärtsch, P., and Gibbs, J. S. (2007). Effect of altitude on the heart and the lungs. Circulation 116, 2191-2202. doi: 10.1161/CIRCULATIONAHA.106.650796
- Bassett, D. R., and Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32, 70-84. doi: 10.1097/00005768-200001000-00012
- Bender, P. R., McCullough, R. E., McCullough, R. G., Huang, S. Y., Wagner, P. D., Cymerman, A., et al. (1989). Increased exercise SaO2 independent of ventilatory acclimatization at 4,300 m. J. Appl. Physiol. 66, 2733-2738. doi: 10.1152/jappl.1989.66.6.2733
- Bernardi, E., Melloni, E., Mandolesi, G., Uliari, S., Grazzi, G., and Cogo, A. (2014). Respiratory muscle endurance training improves breathing pattern in triathletes. Ann. Sport Med. Res. 1, 1-7. doi: 10.1183/13993003.congress-2015.PA2227
- Bernardi, L., Gabutti, A., Porta, C., and Spicuzza, L. (2001a). Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J. Hypertens. 19, 2221-2229. doi: 10.1097/00004872-200112000-00016
- Bernardi, L., Passino, C., Serebrovskaya, Z., Serebrovskaya, T., and Appenzeller, O. (2001b). Respiratory and cardiovascular adaptations to progressive hypoxia; effect of interval hypoxic training. Eur. Heart J. 22, 879-886. doi: 10.1053/euhj.2000.2466
- Bernardi, L., Schneider, A., Pomidori, L., Paolucci, E., and Cogo, A. (2006). Hypoxic ventilatory response in successful extreme altitude climbers. Eur. Respir. J. 27, 165-171. doi: 10.1183/09031936.06.00015805
- Bindslev, L., Jolin, C., Santesson, J., and Gottlieb, I. (1985). Hypoxic pulmonary vasoconstriction in man: effects of hyperventilation. Acta Anaesthesiol. Scand. 29, 547-551. doi: 10.1111/j.1399-6576.1985.tb02251.x
- Bonetti, D. L., and Hopkins, W. G. (2009). Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 39, 107-127. doi: 10.2165/00007256-200939020-00002
- Brown, P. I., Sharpe, G. R., and Johnson, M. A. (2010). Loading of trained inspiratory muscles speeds lactate recovery kinetics. Med. Sci. Sports Exerc. 42, 1103-1112. doi: 10.1249/MSS.0b013e3181c658ac
- Brown, P. I., Sharpe, G. R., and Johnson, M. A. (2012). Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise. Eur. J. Appl. Physiol. 112, 2117-2129. doi: 10.1007/s00421-011-2185-8
- Burtscher, M., Faulhaber, M., Flatz, M., Likar, R., and Nachbauer, W. (2006). Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int. J. Sports Med. 27, 629-635. doi: 10.1055/s-2005-872823
- Chapman, R., and Emery, M. (1999). Degree of arterial desaturation in normoxia influences VO 2max decline in mild hypoxia. Med. Sci.Sport Exerc. 658-663.
- Clark, J. M., Hagerman, F. C., and Gelfand, R. (1983). Breathing patterns during submaximal and maximal exercise in elite oarsmen. J. Appl. Physiol. 55, 440-446. doi: 10.1152/jappl.1983.55.2.440
- Coast, J. R., Clifford, P. S., Henrich, T. W., Stray-Gundersen, J., and Johnson, R. L. (1990). Maximal inspiratory pressure following maximal exercise in trained and untrained subjects. Med. Sci. Sports Exerc. 22, 811-815. doi: 10.1249/00005768-199012000-00013
- Debevec, T., and Mekjavic, I. B. (2012). Short intermittent hypoxic exposures augment ventilation but do not alter regional cerebral and muscle oxygenation during hypoxic exercise. Respir. Physiol. Neurobiol. 181, 132-142. doi: 10.1016/j.resp.2012.02.008
- Dempsey, J. A., Amann, M., Romer, L. M., and Miller, J. D. (2008). Respiratory system determinants of peripheral fatigue and endurance performance. Med. Sci. Sports Exerc. 40, 457-461. doi: 10.1249/MSS.0b013e31815f8957
- Dempsey, J. A., Forster, H. V., Birnbaum, M. L., Reddan, W. G., Thoden, J., Grover, R. F., et al. (1972). Control of exercise hyperpnea under varying durations of exposure to moderate hypoxia. Respir. Physiol. 16, 213-231. doi: 10.1016/0034-5687(72)90052-7
- Dempsey, J. A., and Morgan, B. J. (2015). Humans in hypoxia: a conspiracy of maladaptation?! Physiology. 30, 304-316. doi: 10.1152/physiol.00007.2015
- Dempsey, J. A., Powell, F. L., Bisgard, G. E., Blain, G. M., Poulin, M. J., Smith, C., et al. (2014). Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J. Appl. Physiol. 116, 858-866. doi: 10.1152/japplphysiol.01126.2013
- Dempsey, J. A., Romer, L., Rodman, J., Miller, J., and Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 151, 242-250. doi: 10.1016/j.resp.2005.12.015
- Di Prampero, P. E. (1985). Metabolic and circulatory limitations to VO2 max at the whole animal level. J. Exp. Biol.. 115, 319-331.
- Di Prampero, P. E., and Ferretti, G. (1990). Factors limiting maximal oxygen consumption in humans. Respir. Physiol. 80, 113-127. doi: 10.1016/0034-5687(90)90075-A
- Downey, A. E., Chenoweth, L. M., Townsend, D. K., Ranum, J. D., Ferguson, C. S., and Harms, C. A. (2007). Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir. Physiol. Neurobiol. 156, 137-146. doi: 10.1016/j.resp.2006.08.006
- Edwards, A. M., and Walker, R. E. (2009). Inspiratory muscle training and endurance: a central metabolic control perspective. Int. J. Sports Physiol. Perform. 4, 122-8. doi: 10.1123/ijspp.4.1.122
- Edwards, A. M., Wells, C., and Butterly, R. (2008). Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. Br. J. Sports Med. 42, 523-527. doi: 10.1136/bjsm.2007.045377
- Esposito, F., Limonta, E., Alberti, G., Veicsteinas, A., and Ferretti, G. (2010). Effect of respiratory muscle training on maximum aerobic power in normoxia and hypoxia. Respir. Physiol. Neurobiol. 170, 268-272. doi: 10.1016/j.resp.2010.02.004
- Fairbarn, M. S., Coutts, K. C., Pardy, R. L., and McKenzie, D. C. (1991). Improved respiratory muscle endurance of highly trained cyclists and the effects on maximal exercise performance. Int. J. Sports Med. 12, 66-70. doi: 10.1055/s,- 2007-1024658
- Fitting, J. W. (1991). Respiratory muscle fatigue limiting physical exercise? Eur Respir. J. 4, 103-108.
- Flenley, D. C., Brash, H., Clancy, L., Cooke, N. J., Leitch, A. G., Middleton, W., et al. (1979). Ventilatory response to steady-state exercise in hypoxia in humans. J. Appl. Physiol. 46, 438-446. doi: 10.1152/jappl.1979.46.3.438
- Fulco, C. S., Rock, P. B., and Cymerman, A. (1998). Maximal and submaximal exercise performance at altitude. Aviat. Space Environ. Med. 69, 793-801.
- Gandevia, S. C. (1988). Neural mechanisms underlying the sensation of breathlessness: kinesthetic parallels between respiratory and limb muscles. Aust. N. Z. J. Med. 18, 83-91. doi: 10.1111/j.1445-5994.1988.tb02252.x
- Gething, A. D., Williams, M., and Davies, B. (2004). Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br. J. Sports Med. 38, 730-736. doi: 10.1136/bjsm.2003.007518
- Ghofrani, H. A., Reichenberger, F., Kohstall, M. G., Mrosek, E. H., Seeger, T., Olschewski, H., et al. (2004). Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med. 141, 169-177. doi: 10.7326/0003-4819-141-3-200408030-00005
- González-Montesinos, J. L., Vaz Pardal, C., Fernández Santos, J. R., Arnedillo Muñoz, A., Costa Sepúlveda, J. L., and Gómez Espinosa de los Monteros, R. (2012). Efectos del entrenamiento de la musculatura respiratoria sobre el rendimiento. Revisión bibliográfica. Rev. Andaluza Med. Deport. 5, 163-170. doi: 10.1016/S1888-7546(12)70025-4
- Green, H. J., Sutton, J. R., Wolfel, E. E., Reeves, J. T., Butterfield, G. E., and Brooks, G. A. (1992). Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise. J. Appl. Physiol. 73, 2701-2708. doi: 10.1152/jappl.1992.73.6.2701
- Gudjonsdottir, M., Appendini, L., Baderna, P., Purro, A., Patessio, A., Vilianis, G., et al. (2001). Diaphragm fatigue during exercise at high altitude: the role of hypoxia and workload. Eur. Respir. J. 17, 674-680. doi: 10.1183/09031936.01.17406740
- Guenette, J. A., Martens, A. M., Lee, A. L., Tyler, G. D., Richards, J. C., Foster, G. E., et al. (2006). Variable effects of respiratory muscle training on cycle exercise performance in men and women. Appl. Physiol. Nutr. Metab. 31, 159-166. doi: 10.1139/h05-016
- Hanel, B., and Secher, N. H. (1991). Maximal oxygen uptake and work capacity after inspiratory muscle training: a controlled study. J. Sports Sci. 9, 43-52. doi: 10.1080/02640419108729854
- Hansen, J., Sander, M., Hald, C. F., Victor, R. G., and Thomas, G. D. (2000). Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J. Physiol. 527, 387-396. doi: 10.1111/j.1469-7793.2000.00387.x
- Harms, C. A. (2007). Insights into the role of the respiratory muscle metaboreflex. J. Physiol. 584:711. doi: 10.1113/jphysiol.2007.145540
- Harms, C. A., Babcock, M. A., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., et al. (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 82, 1573-1583. doi: 10.1152/jappl.1997.82.5.1573
- Harms, C. A., Wetter, T. J., McClaran, S. R., Pegelow, D. F., Nickele, G., Nelson, W. B., et al. (1998). Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J. Appl. Physiol. 85, 609-618. doi: 10.1152/jappl.1998.85.2.609
- Harms, C. A., Wetter, T. J., St Croix, C. M., Pegelow, D. F., and Dempsey, J. A. (2000). Effects of respiratory muscle work on exercise performance. J. Appl. Physiol. 89, 131-138. doi: 10.1152/jappl.2000.89.1.131
- Helfer, S., Quackenbush, J., Fletcher, M., and Pendergast, D. R. (2016). Respiratory muscle training and exercise endurance at altitude. Aerosp. Med. Hum. Perform. 87, 704-711. doi: 10.3357/AMHP.4405.2016
- Hellyer, N. J., Folsom, I. A., Gaz, D. V., Kakuk, A. C., Mack, J. L., and Ver Mulm, J. A. (2015). Respiratory muscle activity during simultaneous stationary cycling and inspiratory muscle training. J. Strength Cond. Res. 29, 3517-3522. doi: 10.1097/JSC.0000000000000238
- Holm, P., Sattler, A., and Fregosi, R. F. (2004). Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 4:9. doi: 10.1186/1472-6793-4-9
- Illi, S. K., Held, U., Frank, I., and Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med. 42, 707-24. doi: 10.1007/BF032 62290
- Jaoude, P. A., Porhomayon, J., and El Solh, A. A. (2012). "Effects of obesity on respiratory physiology, " in Critical Care Management of the Obese Patient, ed A. A. El Solh (Chichester: Wiley-Blackwell, Ltd.), 13-20.
- Johnson, B. D., Babcock, M. A., Suman, O. E., and Dempsey, J. A. (1993). Exercise- induced diaphragmatic fatigue in healthy humans. J. Physiol. 460, 385-405. doi: 10.1113/jphysiol.1993.sp019477
- Johnson, M. A., Sharpe, G. R., and Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur. J. Appl. Physiol. 101, 761-770. doi: 10.1007/s00421-007-0551-3
- Katayama, K., Goto, K., Ishida, K., and Ogita, F. (2010). Substrate utilization during exercise and recovery at moderate altitude. Metab. Clin. Exp. 59, 959-966. doi: 10.1016/j.metabol.2009.10.017
- Kayser, B. (2003). Exercise starts and ends in the brain. Eur. J. Appl. Physiol. 90, 411-9. doi: 10.1007/s00421-003-0902-7
- Kayser, B. (2009). Disentangling hypoxia and hypobaria. Respir. Physiol. Neurobiol. 169, 338-339. doi: 10.1016/j.resp.2009.09.010
- Kayser, B., Narici, M., Binzoni, T., Grassi, B., and Cerretelli, P. (1994). Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J. Appl. Physiol. 76, 634-640. doi: 10.1152/jappl.1994.76.2.634
- Keramidas, M. E., Kounalakis, S. N., and Mekjavic, I. B. (2011). Aerobic exercise training preceded by respiratory muscle endurance training: a synergistic action enhances the hypoxic aerobic capacity. Eur. J. Appl. Physiol. 111, 2629-2630. doi: 10.1007/s00421-011-1887-2
- Keyl, C., Schneider, A., Gamboa, A., Spicuzza, L., Casiraghi, N., Mori, A., et al. (2003). Autonomic cardiovascular function in high-altitude Andean natives with chronic mountain sickness. J. Appl. Physiol. 94, 213-219. doi: 10.1152/japplphysiol.01258.2001
- Kleinsasser, A., Von Goedecke, A., Hoermann, C., Maier, S., Schaefer, A., Keller, C., et al. (2004). Proportional assist ventilation reduces the work of breathing during exercise at moderate altitude. High Alt. Med. Biol. 5, 420-428. doi: 10.1089/ham.2004.5.420
- Lahiri, S., Kao, F. F., Velasquez, T., Martinez, C., and Pezzia, W. (1970). Respiration of man during exercise at high altitude: highlander vs. lowlander. Respir. Physiol. 8, 361-375. doi: 10.1016/0034-5687(70)90043-5
- Leddy, J. J., Limprasertkul, A., Patel, S., Modlich, F., Buyea, C., Pendergast, D. R., et al. (2007). Isocapnic hyperpnea training improves performance in competitive male runners. Eur. J. Appl. Physiol. 99, 665-676. doi: 10.1007/s00421-006-0390-7
- Leith, D. E., and Bradley, M. (1976). Ventilatory muscle strength and endurance training. J. Appl. Physiol. 41, 508-516. doi: 10.1152/jappl.1976.41.4.508
- Levine, B. D., and Stray-Gundersen, J. (2001). The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise. Adv. Exp. Med. Biol. 502, 75-88. doi: 10.1007/978-1-4757-3401-0_7
- Loeppky, J. A., Roach, R. C., Maes, D., Hinghofer-Szalkay, H., Roessler, A., Gates, L., et al. (2005). Role of hypobaria in fluid balance response to hypoxia. High Alt. Med. Biol. 6, 60-71. doi: 10.1089/ham.2005.6.60
- Lomax, M. (2010). Inspiratory muscle training, altitude, and arterial oxygen desaturation: a preliminary investigation. Aviat. Space Environ. Med. 81, 498-501. doi: 10.3357/ASEM.2718.2010
- Lomax, M., Massey, H. C., and House, J. R. (2017). Inspiratory muscle training effects on cycling during acute hypoxic exposure. Aerosp. Med. Hum. Perform. 88, 544-549. doi: 10.3357/AMHP.4780.2017
- Luciá, A., Hoyos, J., Carvajal, A., and Chicharro, J. L. (1999). Heart rate response to professional road cycling: the Tour de France. Int. J. Sports Med. 20, 167-172. doi: 10.1055/s-2007-971112
- Lucia, A., Hoyos, J., and Chicharro, J. L. (2001). Physiology of professional road cycling. Sports Med. 31, 325-337. doi: 10.2165/00007256-200131050-00004
- Lyons, T. P., Muza, S. R., Rock, P. B., and Cymerman, A. (1995). The effect of altitude pre-acclimatization on acute mountain sickness during reexposure. Aviat. Space Environ. Med. 66, 957-962.
- Markov, G., Spengler, C. M., Knöpfli-Lenzin, C., Stuessi, C., and Boutellier, U. (2001). Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur. J. Appl. Physiol. 85, 233-239. doi: 10.1007/s004210100450
- Martin, B. J., and Weil, J. V. (1979). CO2 and exercise tidal volume. J. Appl. Physiol. 46, 322-325. doi: 10.1152/jappl.1979.46.2.322
- Martin, T. R., Castile, R. G., Fredberg, J. J., Wohl, M. E., and Mead, J. (1987). Airway size is related to sex but not lung size in normal adults. J. Appl. Physiol. 63, 2042-2047. doi: 10.1152/jappl.1987.63.5.2042
- Mazzeo, R. S. (2008). Physiological responses to exercise at altitude : an update. Sports Med. 38, 1-8. doi: 10.2165/00007256-200838010-00001
- McConnell, A. K., and Romer, L. M. (2004). Respiratory muscle training in healthy humans: resolving the controversy. Int. J. Sport Med. 25, 284-293. doi: 10.1055/s-2004-815827
- McConnell, A. K., and Sharpe, G. R. (2005). The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration. Eur. J. Appl. Physiol. 94, 277-284. doi: 10.1007/s00421-004-1282-3
- Millet, G. P., Roels, B., Schmitt, L., Woorons, X., and Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Med. 40, 1-25. doi: 10.2165/11317920-000000000-00000
- Morgan, D. W., Kohrt, W. M., Bates, B. J., and Skinner, J. S. (1987). Effects of respiratory muscle endurance training on ventilatory and endurance performance of moderately trained cyclists. Int. J. Sports Med. 8, 88-93. doi: 10.1055/s-2008-1025647
- Moudgil, R., Michelakis, E. D., and Archer, S. L. (2005). Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 98, 390-403. doi: 10.1152/japplphysiol.00733.2004
- Naimark, A., and Cherniack, R. M. (1960). Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15, 377-382. doi: 10.1152/jappl.1960.15.3.377
- Nicola, A., Marcora, S. M., and Sacchetti, M. (2016). Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J. Sports Sci. 34, 1199-1206. doi: 10.1080/02640414.2015.1102315
- Noakes, T. D. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sports. 10, 123-145. doi: 10.1034/j.1600-0838.2000.010003123.x
- Noakes, T. D. (2004). Linear relationship between the perception of effort and the duration of constant load exercise that remains. J. Appl. Physiol. 96, 1571-1573. doi: 10.1152/japplphysiol.01124.2003
- Noakes, T. D., St Clair Gibson, A., and Lambert, E. V. (2005). From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br. J. Sports Med. 39, 120-124. doi: 10.1136/bjsm.2003.010330
- Nummela, A., and Rusko, H. (2000). Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J. Sports Sci. 18, 411-419. doi: 10.1080/02640410050074340
- O'Donnell, D. E., D'Arsigny, C., Raj, S., Abdollah, H., and Webb, K. A. (1999). Ventilatory assistance improves exercise endurance in stable congestive heart failure. Am. J. Respir. Crit. Care Med. 160, 1804-1811.
- Oren, A., Wasserman, K., Davis, J. A., and Whipp, B. J. (1981). Effect of CO2 set point on ventilatory response to exercise. J. Appl. Physiol. 51, 185-189. doi: 10.1152/jappl.1981.51.1.185
- Parameswaran, K., Todd, D. C., and Soth, M. (2006). Altered respiratory physiology in obesity. Can. Respir. J. 13, 203-210. doi: 10.1155/2006/834786
- Powers, S. K., Lawler, J., Dempsey, J. A., Dodd, S., and Landry, G. (1989). Effects of incomplete pulmonary gas exchange on VO2max. J. Appl. Physiol. 66, 2491-2495. doi: 10.1152/jappl.1989.66.6.2491
- Quackenbush, J., Duquin, A., Helfer, S., and Pendergast, D. R. (2016). Respiratory muscle training and cognitive function exercising at altitude. Aerosp. Med. Hum. Perform. 87, 18-25. doi: 10.3357/AMHP.4420.2016
- Rausch, S. M., Whipp, B. J., Wasserman, K., and Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J. Physiol. 444, 567-578. doi: 10.1113/jphysiol.1991.sp018894
- Ricart, A., Casas, H., Casas, M., Pages, T., Palacios, L., Rama, R., et al. (2000). Acclimatization near home? Early respiratory changes after short- term intermittent exposure to simulated altitude. Wilderness Environ. Med. 11, 84-88. doi: 10.1580/1080-6032(2000)011[0084:ANHERC]2.3.CO;
- Richalet, J. P., Gratadour, P., Robach, P., Pham, I., Déchaux, M., Joncquiert- Latarjet, A., et al. (2005). Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am. J. Respir. Crit. Care Med. 171, 275-281. doi: 10.1164/rccm.200406-804OC
- Richalet, J. P., Larmignat, P., Poitrine, E., Letournel, M., and Canouï-Poitrine, F. (2012). Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am. J. Respir. Crit. Care Med. 185, 192-198. doi: 10.1164/rccm.201108-1396OC
- Romer, L. M., Dempsey, J. A., Lovering, A., and Eldridge, M. (2006). Exercise- induced arterial hypoxemia: consequences for locomotor muscle fatigue. Adv. Exp. Med. Biol. 588, 47-55. doi: 10.1007/978-0-387-34817-9_5
- Romer, L. M., McConnell, A. K., and Jones, D. A. (2002a). Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. Int. J. Sports Med. 23, 353-360. doi: 10.1055/s-2002-33143
- Romer, L. M., McConnell, A. K., and Jones, D. A. (2002b). Effects of inspiratory muscle training on time-trial performance in trained cyclists. J. Sports Sci. 20, 547-562. doi: 10.1080/026404102760000053
- Romer, L. M., and Polkey, M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. J. Appl. Physiol. 104, 879-888. doi: 10.1152/japplphysiol.01157.2007
- Rusko, H. K., Tikkanen, H. O., and Peltonen, J. E. (2004). Altitude and endurance training. J. Sports Sci. 22, 928-44; discussion: 945. doi: 10.1080/02640410400005933
- Salazar-Martínez, E., Gatterer, H., Burtscher, M., Orellana, J. N., and Santalla, A. (2017). Influence of inspiratory muscle training on ventilatory efficiency and cycling performance in normoxia and hypoxia. Front. Physiol. 8:00133. doi: 10.3389/fphys.2017.00133
- Sales, A. T., Fregonezi, G. A., Ramsook, A. H., Guenette, J. A., Lima, I. N., and Reid, W. D. (2016). Respiratory muscle endurance after training in athletes and non- athletes: a systematic review and meta-analysis. Phys. Ther. Sport 17, 76-86. doi: 10.1016/j.ptsp.2015.08.001
- San Martin, R., Brito, J., Siques, P., and León-Velarde, F. (2017). Obesity as a conditioning factor for high-altitude diseases. Obes. Facts 10, 363-372. doi: 10.1159/000477461
- Saunders, P. U., Pyne, D. B., and Gore, C. J. (2009). Endurance training at altitude. High Alt. Med. Biol. 10, 135-148. doi: 10.1089/ham.2008.1092
- Savourey, G., Launay, J. C., Besnard, Y., Guinet, A., and Travers, S. (2003). Normo- and hypobaric hypoxia: are there any physiological differences? Eur. J. Appl. Physiol. 89, 122-126. doi: 10.1007/s00421-002-0789-8
- Schoene, R. B. (2001). Limits of human lung function at high altitude. J. Exp. Biol. 204, 3121-3127. Available online at: http://jeb.biologists.org/content/204/18/ 3121.article-info
- Seals, D. R. (2001). Robin Hood for the lungs? a respiratory metaboreflex that "steals" blood flow from locomotor muscles. J. Physiol. 537:2. doi: 10.1111/j.1469-7793.2001.0002k.x
- Somers, V. K., Mark, A. L., and Abboud, F. M. (1991). Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J. Clin. Invest. 87, 1953-1957. doi: 10.1172/JCI115221
- Sonetti, D. A., Wetter, T. J., Pegelow, D. F., and Dempsey, J. A. (2001). Effects of respiratory muscle training vs. placebo on endurance exercise performance. Respir. Physiol. 127, 185-199. doi: 10.1016/S0034-5687(01) 00250-X St Clair Gibson, A., Lambert, E. V., Rauch, L. H. G., Tucker, R., Baden, D. A., Foster, C., et al. (2006). The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 36, 705-22. doi: 10.2165/00007256-200636080-00006
- Stuber, T., Sartori, C., Salinas Salmòn, C., Hutter, D., Thalmann, S., Turini, P., et al. (2008). Respiratory nitric oxide and pulmonary artery pressure in children of aymara and European ancestry at high altitude. Chest 134, 996-1000. doi: 10.1378/chest.08-0854
- Stuessi, C., Spengler, C. M., Knöpfli-Lenzin, C., Markov, G., and Boutellier, U. (2001). Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. Eur. J. Appl. Physiol. 84, 582-586. doi: 10.1007/s004210100408
- Suzuki, S., Sato, M., and Okubo, T. (1995). Expiratory muscle training and sensation of respiratory effort during exercise in normal subjects. Thorax 50, 366-370. doi: 10.1136/thx.50.4.366
- Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., et al. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Appl. Physiol. Nutr. Metab. 33, 671-681. doi: 10.1139/H08-050
- Verges, S., Bachasson, D., and Wuyam, B. (2010). Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir. Res. 11:109. doi: 10.1186/1465-9921-11-109
- Vogiatzis, I., Georgiadou, O., Koskolou, M., Athanasopoulos, D., Kostikas, K., Golemati, S., et al. (2007). Effects of hypoxia on diaphragmatic fatigue in highly trained athletes. J. Physiol. 581, 299-308. doi: 10.1113/jphysiol.2006. 126136
- Volianitis, S., Mcconnell, A. K., Koutedakis, Y., Mcnaughton, L., Backx, K., Jones, D., et al. (2001). Inspiratory muscle training improves rowing performance. Phys. Fit Perform. 33, 803-809. doi: 10.1097/00005768-200105000-00020
- Wagner, P. D. (2000). Reduced maximal cardiac output at altitude - Mechanisms and significance. Respir. Physiol. 120, 1-11. doi: 10.1016/S0034- 5687(99)00101-2
- Waldrop, T. G., Eldridge, F. L., Iwamoto, G., and Mitchell, J. H. (2011). Central neural control of respiration and circulation during exercise. Compr. Physiol. 333-80. doi: 10.1002/cphy.cp120109
- Wells, G. D., Plyley, M., Thomas, S., Goodman, L., and Duffin, J. (2005). Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur. J. Appl. Physiol. 94, 527-540. doi: 10.1007/s00421-005-1375-7
- West, J. B. (2000). Human limits for hypoxia. The physiological challenge of climbing Mt. Everest. Ann. N. Y. Acad. Sci. 899, 15-27. doi: 10.1111/j.1749-6632.2000.tb06173.x
- Witt, J. D., Guenette, J. A., Rupert, J. L., McKenzie, D. C., and Sheel, A. W. (2007). Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. J. Physiol. 584, 1019-1028. doi: 10.1113/jphysiol.2007.140855
- Xing, G., Qualls, C., Huicho, L., Rivera-Ch, M., Stobdan, T., Slessarev, M., et al. (2008). Adaptation and mal-adaptation to ambient hypoxia;
- Andean, Ethiopian and Himalayan patterns. PLoS ONE 3:e2342. doi: 10.1371/annotation/aba20dc1-b10d-464c-9671-c47b956d1718