Buoyant densities of DNA from various strains of Streptococcus mutans (original) (raw)
Related papers
Genetic studies on reference strains of mutans streptococci
Microbiological Research, 2002
Twenty four reference strains (serotype a-h) belonging to the mutans group of streptococci were compared for DNA fragment patterns of rDNA after treatment with Hind III. It was shown that Streptococcus cricetus (serotype a), S. rattus (serotype b), and S. downei (serotype h) reveals comparatively homogeneous patterns while S. mutans (serotype c, e and f) exhibits differences between the different serotypes as well as within single serotypes. S. sobrinus had an intermediary diversity. These data support the previous findings that S. mutans is heterogeneous at the serological, biochemical and genetical level.
Journal of Bacteriology, 2006
There are suggestions that the phylogeny of Streptococcus mutans , a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serot...
Methodological variations in the isolation of genomic DNA from Streptococcus bacteria
Brazilian Archives of Biology and Technology, 2010
In this work, genomic DNA of Streptococcus pyogenes, S. mutans and S. sobrinus was isolated using two methods: either using the detergent cetyltrimethylammonium bromide (CTAB) at 65ÂșC; or by applying ultrasound to a mixture of silica and celite in CTAB. The composite method that used ultrasound was the more efficient, allowing the straightforward extraction of genomic DNA from Gram-positive bacteria with good quality and reproducibility.
The basis for genotypic and phenotypic variation within Streptococcus mutans is poorly understood but the availability of the genome sequence of strain UA159 provides an opportunity for comparative studies. Genomic DNA prepared from nine strains of S. mutans was used to probe a microarray consisting of oligonucleotides representing 1948 open reading frames of S. mutans UA159. A total of 385 (20%) of the UA159 open reading frames were found to be absent from one or more of the test strains. Absent open reading frames frequently occurred in blocks of adjacent open reading frames and represented regions previously experimentally detected by polymerase chain reaction, predicted genomic islands and insertion sequence elements as well as novel open reading frames. Approximately half appear to involve foreign DNA acquired by horizontal transmission. The results indicate the existence of distinct core and dispensable genomes and may help explain the phenotypic and genotypic variation within S. mutans.
Evaluation of genotypic diversity of Streptococcus mutans using distinct arbitrary primers
Journal of Applied Oral Science, 2008
treptococcus mutans has been considered one of the main etiological agents of dental caries and the genotypic diversity rather than its salivary counts may be considered as a virulence factor of this bacterium. For genotyping with polymerase chain reaction (PCR) with arbitrary primers, several primers have been used in order to improve complexity and specificity of amplicon patterns. Thus, the aim of this study was to evaluate the degree of agreement of genotypic identification among AP-PCR reactions performed with 5 distinct arbitrary primers of S. mutans isolated from saliva. Stimulated saliva was collected from 11 adult volunteers for isolation of S. mutans, and a total of 88 isolates were genotyped with arbitrary primers OPA 02, 03, 05, 13 and 18. Fourteen distinct genotypes were identified in the saliva samples. Most volunteers (9 out of 11) presented only one genotype. The results of the present study suggest that primers OPA 02, 03, 05 and 13 were suitable for genotypic identification of S. mutans isolates of saliva from adult volunteers.
Dispensable genes and foreign DNA in Streptococcus mutans
Microbiology, 2006
A range of properties, including the ability to utilize various sugars, bind macromolecules and produce mutacins, are known to vary in their occurrence in different strains of Streptococcus mutans. In addition, insertion-sequence elements show a limited distribution and sequencing of the genome of S. mutans UA159 has revealed the presence of putative genomic islands of atypical base composition indicative of foreign DNA. PCR primers flanking regions suspected of having inserted DNA were designed on the basis of the genome sequence of S. mutans UA159 and used to explore variation in a collection of 39 strains isolated in various parts of the world over the last 40 years. Extensive differences between strains were detected, and similar insertion/deletion events appear to be present in the genomes of strains with very different origins. In two instances, insertion of foreign DNA appears to have displaced original S. mutans genes. Together with previous results on the occurrence of dele...
Genetic relationships among the oral streptococci
Journal of Bacteriology, 1987
Genetic relationships and species limits among the oral streptococci were determined by an analysis of electrophoretically demonstrable variation in 16 metabolic enzymes. Fifty isolates represented 40 electrophoretic types, among which the mean genetic diversity per locus was 0.857. Mannitol-l-phosphate dehydrogenase was not detected in isolates of the sanguis species complex, and glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were absent in species of the mutans complex. Clustering from a matrix of Gower's coefficient of genetic similarity placed the 40 electrophoretic types in 10 well-defined groups corresponding to the Streptococcus species S. mutans, S. sobrinus, S. cricetus, S. rattus, S. ferus, S. oralis (mitior), two distinct assemblages of S. sanguis strains, and two subdivisions of "S. milleri." The assignments of isolates to these groups were the same as those indicated by DNA hybridization experiments, and the coefficient of correlation between genetic distance estimated by multilocus enzyme electrophoresis and genetic similarity indexed by DNA hybridization was-0.897 (P < 0.001) for 50 pairwise combinations of isolates. S. ferus, which is widely believed to be a member of the mutans complex, was shown to be phylogenetically closer to species of the sanguis complex.
A range of properties, including the ability to utilize various sugars, bind macromolecules and produce mutacins, are known to vary in their occurrence in different strains of Streptococcus mutans. In addition, insertion-sequence elements show a limited distribution and sequencing of the genome of S. mutans UA159 has revealed the presence of putative genomic islands of atypical base composition indicative of foreign DNA. PCR primers flanking regions suspected of having inserted DNA were designed on the basis of the genome sequence of S. mutans UA159 and used to explore variation in a collection of 39 strains isolated in various parts of the world over the last 40 years. Extensive differences between strains were detected, and similar insertion/deletion events appear to be present in the genomes of strains with very different origins. In two instances, insertion of foreign DNA appears to have displaced original S. mutans genes. Together with previous results on the occurrence of deletions in genes associated with sugar metabolism, the results indicate that S. mutans has a core genome and a dispensable genome, and that dispensable genes have become widely distributed through horizontal transfer.
Journal of Clinical Microbiology, 2003
We recently identified the genes responsible for the serotype c-specific glucose side chain formation of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. These genes were located downstream from the rgpA through rgpF locus that is involved in the synthesis of RGP. In the present study, the corresponding chromosomal regions were isolated from serotype e and f strains and characterized. The rgpA through rgpF homologs were well conserved among the three serotypes. By contrast, the regions downstream from the rgpF homolog differed considerably among the three serotypes. Replacement of these regions in the different serotype strains converted their serotypic phenotypes, suggesting that these regions participated in serotypespecific glucose side chain formation in each serotype strain. Based on the differences among the DNA sequences of these regions, a PCR method was developed to determine serotypes. S. mutans was isolated from 198 of 432 preschool children (3 to 4 years old). The serotypes of all but one S. mutans isolate were identified by serotyping PCR. Serotype c predominated (84.8%), serotype e was the next most common (13.3%), and serotype f occured rarely (1.9%) in Japanese preschool children. Caries experience in the group with a mixed infection by multiple serotypes of S. mutans was significantly higher than that in the group with a monoinfection by a single serotype.