A simple and effective method for ultrastructural analysis of mitosis in Drosophila S2 cells (original) (raw)

Ultrastructural analysis of intracellular membrane and microtubule behavior during mitosis of Drosophila S2 cells

S2 cells are one of the most widely used Drosophila melanogaster cell lines for molecular dissection of mitosis using RNA interference (RNAi). However, a detailed and complete description of S2 cell mitosis at the ultrastructural level is still missing. Here, we analyzed by transmission electron microscopy (TEM) a random sample of 144 cells undergoing mitosis, focusing on intracellular membrane and microtubule (MT) behavior. This unbiased approach allowed us to discover that S2 cells exhibit a characteristic behavior of intracellular membranes, involving the formation of a quadruple nuclear membrane in early prometaphase and its disassembly during late prometaphase. After nuclear envelope disassembly, the mitotic apparatus becomes encased by a discontinuous network of ER membranes that associate with mitochondria preventing their diffusion into the spindle area. We also observed a peculiar metaphase spindle organization. We found that kinetochores with attached k-fibers are almost i...

Ultrastructural analysis of mitotic Drosophila S2 cells identifies distinctive microtubule and intracellular membrane behaviors

BMC Biology

Background: S2 cells are one of the most widely used Drosophila melanogaster cell lines. A series of studies has shown that they are particularly suitable for RNAi-based screens aimed at the dissection of cellular pathways, including those controlling cell shape and motility, cell metabolism, and host-pathogen interactions. In addition, RNAi in S2 cells has been successfully used to identify many new mitotic genes that are conserved in the higher eukaryotes, and for the analysis of several aspects of the mitotic process. However, no detailed and complete description of S2 cell mitosis at the ultrastructural level has been done. Here, we provide a detailed characterization of all phases of S2 cell mitosis visualized by transmission electron microscopy (TEM). Results: We analyzed by TEM a random sample of 144 cells undergoing mitosis, focusing on intracellular membrane and microtubule (MT) behaviors. This unbiased approach provided a comprehensive ultrastructural view of the dividing cells, and allowed us to discover that S2 cells exhibit a previously uncharacterized behavior of intracellular membranes, involving the formation of a quadruple nuclear membrane in early prometaphase and its disassembly during late prometaphase. After nuclear envelope disassembly, the mitotic apparatus becomes encased by a discontinuous network of endoplasmic reticulum membranes, which associate with mitochondria, presumably to prevent their diffusion into the spindle area. We also observed a peculiar metaphase spindle organization. We found that kinetochores with attached k-fibers are almost invariably associated with lateral MT bundles that can be either interpolar bundles or k-fibers connected to a different kinetochore. This spindle organization is likely to favor chromosome alignment at metaphase and subsequent segregation during anaphase. Conclusions: We discovered several previously unknown features of membrane and MT organization during S2 cell mitosis. The genetic determinants of these mitotic features can now be investigated, for instance by using an RNAi-based approach, which is particularly easy and efficient in S2 cells.

Additional file 10: of Ultrastructural analysis of mitotic Drosophila S2 cells identifies distinctive microtubule and intracellular membrane behaviors

2018

Figure S2. Serial sections of prometaphase and metaphase cells and 3D reconstruction of intracellular membrane organization. a Serial sections (numbers specify the section shown) of a PM1 cell showing the QNM in the area of nuclear fenestration and a normal DNM along most of the nuclear envelope. Note the association of the chromatin with the DNM (red arrows). b Serial sections of a PM2 cell showing a nuclear envelope mostly composed of QNM, and ER membranes laying outside the nuclear envelope. c Serial sections of a PM3 cell showing partial disassembly of the inner membrane component of the QNM through a vesiculation process. d Sections of a metaphase cell showing complete disassembly of the QNM, and ER membrane stacks along the spindle. Note the mitochondria associated with the ER membranes. Scale bars: 1Â Iźm. (TIF 14176 kb)

A single Drosophila embryo extract for the study of mitosis ex vivo

Nature Protocols, 2013

Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.

Mitosis in the Drosophila embryo — in and out of control

Trends in Genetics, 1991

Increasing levels of regulation act upon mitosis as the Drosophila embryo develops. The first 13 rapid cycles in the syncytial embryo rely on maternal gene products and lack feedback regulation to monitor the completion of S phase. Such regulation is introduced together with a G2 phase in cycle 14, and the network of universal mitotic regulators comes under the overall control of string, a cdc25 homologue, whose transcription is activated within mitotic domains.

Mitosis in Drosophila development

Journal of Cell Science, 1989

Many aspects of the mitotic cycle can take place independently in syncytial Drosophila embryos. Embryos from females homozygous for the mutation gnu undergo rounds of DNA synthesis without nuclear division to produce giant nuclei, and at the same time show many cycles of centrosome replication (Freeman et al. 1986). S phase can be inhibited in wild-type Drosophila embryos by injecting aphidicolin, in which case not only do centrosomes replicate, but chromosomes continue to condense and decondense, the nuclear envelope undergoes cycles of breakdown and reformation, and cycles of budding activity continue at the cortex of the embryo (Raff and Glover, 1988). If aphidicolin is injected when nuclei are in the interior of the embryo, centrosomes dissociate from the nuclei and can migrate to the cortex. Pole cells without nuclei then form around those centrosomes that reach the posterior pole (Raff and Glover, 1989); the centrosomes presumably must interact with polar granules, the maternally-provided determinants for pole cell formation. T he pole cells form the germ-line of the developing organism, and as such may have specific requirements for mitotic cell division. This is suggested by our finding that a specific class of cyclin mRNAs, the products of the cyclin B gene, accumulate in pole cells during embryogenesis (Whitfield et al. 1989). Other genes that are essential for mitosis in early embryogenesis and in later development are discussed.